Skip to main content

Advertisement

Log in

Sustainable Lipase Production by Diutina rugosa NRRL Y-95 Through a Combined Use of Agro-Industrial Residues as Feedstock

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The potential use of alternative culture media towards the development of a sustainable bioprocess to produce lipases by Diutina rugosa is clearly demonstrated. First, a synthetic medium containing glucose, peptone, yeast extract, oleic acid, and ammonium sulfate was proposed, with lipase activity of 143 U/L. Then, alternative culture media formulated with agro-industrial residues, such as molasses, corn steep liquor (CSL), and olive mill waste (OMW), were investigated. An experimental design was conducted, and only CSL concentration was found to have a positive effect in lipase production. The highest lipase activity (561 U/L) was produced on a mixture of molasses (5 g/L), CSL (6 g/L), OMW (0.5% v/v), 0.5 g/L of ammonium sulfate, and 3 g/L of peptone at 24 h of cultivation. Lipase production was also carried out in a 1-L bioreactor leading to a slightly higher lipase activity at 24 h of cultivation. The semi-purified enzyme exhibits an optimum temperature and pH of 40 °C and 7.0, respectively. Finally, the media cost per unit of lipase produced (UPC) was influenced by the medium components, specially by the inducer used. The lowest UPC was obtained when the agro-industrial residues were combined and used at the improved concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maina, S., Kachrimanidou, V., & Koutinas, A. (2017). A roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry, 8, 18–23. https://doi.org/10.1016/j.cogsc.2017.07.007.

    Article  Google Scholar 

  2. Reina, R., Ullrich, R., García-Romera, I., Liers, C., & Aranda, E. (2016). Integrated biovalorization of wine and olive mill by-products to produce enzymes of industrial interest and soil amendments. Spanish Journal of Agricultural Research, 14(3). https://doi.org/10.5424/sjar/2016143-8961.

  3. Mateo, J. J., & Maicas, S. (2015). Valorization of winery and oil mill wastes by microbial technologies. Food Research International, 73, 13–25. https://doi.org/10.1016/j.foodres.2015.03.007.

    Article  CAS  Google Scholar 

  4. Gudiña, E. J., Rodrigues, A. I., de Freitas, V., Azevedo, Z., Teixeira, J. A., & Rodrigues, L. R. (2016). Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresource Technology, 212(2016), 144–150. https://doi.org/10.1016/j.biortech.2016.04.027.

    Article  CAS  PubMed  Google Scholar 

  5. Urszula Fabiszewska, A., Kotyrba, D., & Nowak, D. (n.d.). Assortment of carbon sources in medium for Yarrowia lipolytica lipase production: a statistical approach. https://doi.org/10.1007/s13213-014-0988-7.

  6. Pinheiro, A. D. T., Rocha, M. V. P., Macedo, G. R., & Gonçalves, L. R. B. (2008). Evaluation of cashew apple juice for the production of fuel ethanol. Applied Biochemistry and Biotechnology, 148(1–3), 227–234. https://doi.org/10.1007/s12010-007-8118-7.

    Article  CAS  PubMed  Google Scholar 

  7. Brozzoli, V., Crognale, S., Sampedro, I., Federici, F., D’Annibale, A., & Petruccioli, M. (2009). Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor. Bioresource Technology, 100(13), 3395–3402. https://doi.org/10.1016/j.biortech.2009.02.022.

    Article  CAS  PubMed  Google Scholar 

  8. Maldonado, R. R., Pozza, E. L., Aguiar-Oliveira, E., Costa, F. A. A., Maugeri Filho, F., & Rodrigues, M. I. (2016). Characterization of crude and partially purified lipase from Geotrichum candidum obtained with different nitrogen sources. JAOCS, Journal of the American Oil Chemists’ Society, 93(10), 1355–1364. https://doi.org/10.1007/s11746-016-2875-9.

    Article  CAS  Google Scholar 

  9. Maldonado, R. R., Aguiar-Oliveira, E., Pozza, E. L., Costa, F. A. A., Filho, F. M., & Rodrigues, M. I. (2014). Production of lipase from Geotrichum candidum using corn steep liquor in different bioreactors. JAOCS, Journal of the American Oil Chemists’ Society, 91(12), 1999–2009. https://doi.org/10.1007/s11746-014-2552-9.

    Article  CAS  Google Scholar 

  10. Potumarthi, R., Subhakar, C., Vanajakshi, J., & Jetty, A. (2008). Effect of aeration and agitation regimes on lipase production by newly isolated rhodotorula mucilaginosa-MTCC 8737 in stirred tank reactor using molasses as sole production medium. Applied Biochemistry and Biotechnology, 151(2–3), 700–710. https://doi.org/10.1007/s12010-008-8293-1.

    Article  CAS  PubMed  Google Scholar 

  11. Cavalcanti, E., d’Avila, C., Gutarra, M. L. E., Freire, D. M. G., Castilho, L. d. R., & Sant’Anna Júnior, G. L. (2005). Lipase production by solid-state fermentation in fixed-bed bioreactors. Brazilian Archives of Biology and Technology, 48(spe), 79–84. https://doi.org/10.1590/s1516-89132005000400010.

    Article  Google Scholar 

  12. Releases, P., & Keyword, S. (n.d.). Lipase market—global industry analysis, size and forecast, 201.

  13. Global Market Insights. (2018). Lipase market size, share - analysis report, 2024. Global Market Insights Inc., 0688, 4–5. Retrieved from https://www.gminsights.com/industry-analysis/lipase-market

  14. De Godoy Daiha, K., Angeli, R., De Oliveira, S. D., & Almeida, R. V. (2015). Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. PLoS One, 10(6), e0131624. https://doi.org/10.1371/journal.pone.0131624.

    Article  CAS  Google Scholar 

  15. Abrunhosa, L., Oliveira, F., Dantas, D., Gonçalves, C., & Belo, I. (2013). Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess and Biosystems Engineering, 36(3), 285–291. https://doi.org/10.1007/s00449-012-0783-4.

    Article  CAS  PubMed  Google Scholar 

  16. Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235–251. https://doi.org/10.1016/j.enzmictec.2005.10.016.

    Article  CAS  Google Scholar 

  17. Kaushik, R., Saran, S., Isar, J., & Saxena, R. K. (2006). Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. Journal of Molecular Catalysis B: Enzymatic, 40(3–4), 121–126. https://doi.org/10.1016/j.molcatb.2006.02.019.

    Article  CAS  Google Scholar 

  18. Gordillo, M. A., Montesinos, J. L., Casas, C., Valero, F., Lafuente, J., & Solà, C. (1998). Improving lipase production from Candida rugosa by a biochemical engineering approach. Chemistry and Physics of Lipids, 93(1–2), 131–142. https://doi.org/10.1016/S0009-3084(98)00037-1.

    Article  CAS  PubMed  Google Scholar 

  19. Montesinos, J. L., Obradors, N., Gordillo, M. A., Valero, F., Lafuente, J., & Solà, C. (1996). Effect of nitrogen sources in batch and continuous cultures to lipase production by Candida rugosa. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 59(1), 25–37. https://doi.org/10.1007/BF02787855.

    Article  CAS  Google Scholar 

  20. Ferrer, P., Montesinos, J. L., Valero, F., & Solà, C. (2001). Production of native and recombinant lipases by Candida rugosa. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 95(3), 221–255. https://doi.org/10.1385/ABAB:95:3:221.

    Article  CAS  Google Scholar 

  21. Daumal, E., Montesinos, J., Lotti, M., & Casas, C. (2000). Effect of different carbon sources on lipase production by Candida rugosa. Enzyme and Microbial Technology, 26(9–10), 657–663. https://doi.org/10.1016/S0141-0229(00)00156-3.

    Article  Google Scholar 

  22. Brígida, A. I. S., Amaral, P. F. F., Coelho, M. A. Z., & Gonçalves, L. R. B. (2014). Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 101, 148–158. https://doi.org/10.1016/j.molcatb.2013.11.016.

    Article  CAS  Google Scholar 

  23. Puthli, M. S., Rathod, V. K., & Pandit, A. B. (2006). Optimization of lipase production in a triple impeller bioreactor. Biochemical Engineering Journal, 27(3), 287–294. https://doi.org/10.1016/J.BEJ.2005.08.016.

    Article  CAS  Google Scholar 

  24. Burkert, J. F. M., Maugeri, F., & Rodrigues, M. I. (2004). Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresource Technology, 91(1), 77–84. https://doi.org/10.1016/S0960-8524(03)00152-4.

    Article  CAS  PubMed  Google Scholar 

  25. de Morais, W. G. G., Kamimura, E. S., Ribeiro, E. J. E. J., Pessela, B. C., Cardoso, V. L., & de Resende, M. M. (2016). Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soybean molasses by submerged fermentation. Protein Expression and Purification, 123, 26–34. https://doi.org/10.1016/j.pep.2016.04.001.

    Article  CAS  Google Scholar 

  26. Salihu, A., Alam, M. Z., AbdulKarim, M. I., & Salleh, H. M. (2012). Lipase production: an insight in the utilization of renewable agricultural residues. Resources, Conservation and Recycling, 58, 36–44. https://doi.org/10.1016/j.resconrec.2011.10.007.

    Article  Google Scholar 

  27. Sangproo, M., Polyiam, P., Jantama, S. S., Kanchanatawee, S., & Jantama, K. (2012). Metabolic engineering of Klebsiella oxytoca M5a1 to produce optically pure d-lactate in mineral salts medium. Bioresource Technology, 119, 191–198. https://doi.org/10.1016/J.BIORTECH.2012.05.114.

    Article  CAS  PubMed  Google Scholar 

  28. Gudiña, E. J., Rodrigues, A. I., Alves, E., Domingues, M. R., Teixeira, J. A., & Rodrigues, L. R. (2015). Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresource Technology, 177, 87–93. https://doi.org/10.1016/J.BIORTECH.2014.11.069.

    Article  PubMed  Google Scholar 

  29. Daniels, R. S. (2013). Corn steep liquor as a biostimulant composition. United States. Retrieved from http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20120028801.PGNR.

  30. Edwinoliver, N. G., Thirunavukarasu, K., Purushothaman, S., Rose, C., Gowthaman, M. K., & Kamtni, N. R. (2009). Corn steep liquor as a nutrition adjunct for the production of Aspergillus niger lipase and hydrolysis of oils thereof. Journal of Agricultural and Food Chemistry, 57(22), 10658–10663. https://doi.org/10.1021/jf902726p.

    Article  CAS  PubMed  Google Scholar 

  31. Priyanka, P., Kinsella, G., Henehan, G. T., & Ryan, B. J. (2019). Isolation, purification and characterization of a novel solvent stable lipase from Pseudomonas reinekei. Protein Expression and Purification, 153(August 2018), 121–130. https://doi.org/10.1016/j.pep.2018.08.007.

    Article  CAS  PubMed  Google Scholar 

  32. Chander, H., & Ranganathan, B. (1975). Role of amino acids on the growth and lipase production ofStreptococcus faecalis. Experientia, 31(11), 1263–1263. https://doi.org/10.1007/BF01945768.

    Article  CAS  PubMed  Google Scholar 

  33. D’Annibale, A., Sermanni, G. G., Federici, F., & Petruccioli, M. (2006). Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresource Technology, 97(15), 1828–1833. https://doi.org/10.1016/j.biortech.2005.09.001.

    Article  CAS  PubMed  Google Scholar 

  34. Gonçalves, C., Oliveira, F., Pereira, C., & Belo, I. (2012). Fed-batch fermentation of olive mill wastewaters for lipase production. Journal of Chemical Technology and Biotechnology, 87(8), 1215–1218. https://doi.org/10.1002/jctb.3738.

    Article  CAS  Google Scholar 

  35. Salgado, V., Fonseca, C., Lopes da Silva, T., Roseiro, J. C., & Eusébio, A. (2019). Isolation and identification of Magnusiomyces capitatus as a lipase-producing yeast from olive mill wastewater. Waste and Biomass Valorization., 11(7), 3207–3221. https://doi.org/10.1007/s12649-019-00725-7.

    Article  CAS  Google Scholar 

  36. Khunnamwong, P., Lertwattanasakul, N., Jindamorakot, S., Limtong, S., & Lachance, M. A. (2015). Description of diutina gen. nov diutina siamensis, f.a. Sp. Nov and reassignment of candida catenulata, candida mesorugosa, candida neorugosa, candida pseudorugosa, candida ranongensis, candida rugosa and candida scorzettiae to the genus diutina. International Journal of Systematic and Evolutionary Microbiology, 65(12), 4701–4709. https://doi.org/10.1099/ijsem.0.000634.

    Article  CAS  PubMed  Google Scholar 

  37. Ratomahenina, R., Riaublanc, A., & Galzy, P. (1993). Study of a lipase from Candida rugosa Diddens and Lodder. Fett Wissenschaft Technologie/Fat Science Technology, 95(4), 134–137. https://doi.org/10.1002/lipi.19930950404.

    Article  Google Scholar 

  38. Meneses, D. P., Gudiña, E. J., Fernandes, F., Gonçalves, L. R. B., Rodrigues, L. R., & Rodrigues, S. (2017). The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer. Microbiological Research, 204, 40–47. https://doi.org/10.1016/j.micres.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  39. Cardoso, V. M., Campani, G., Santos, M. P., Silva, G. G., Pires, M. C., Gonçalves, V. M., … Zangirolami, T. C. (2020). Cost analysis based on bioreactor cultivation conditions: production of a soluble recombinant protein using Escherichia coli BL21(DE3). Biotechnology Reports, 26. https://doi.org/10.1016/j.btre.2020.e00441.

  40. Miller, G. L. (1959). Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  41. Gomes, N., Gonalves, C., García-Román, M., Teixeira, J. A., & Belo, I. (2011). Optimization of a colorimetric assay for yeast lipase activity in complex systems. Analytical Methods, 3(4), 1008–1013. https://doi.org/10.1039/c0ay00680g.

    Article  CAS  Google Scholar 

  42. Bussamara, R., Fuentefria, A. M., de Oliveira, E. S., Broetto, L., Simcikova, M., Valente, P., et al. (2010). Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresource Technology, 101(1), 268–275. https://doi.org/10.1016/j.biortech.2008.10.063.

    Article  CAS  PubMed  Google Scholar 

  43. Valero, F., del Río, J. L., Poch, M., & Solà, C. (1991). Fermentation behaviour of lipase production by Candida rugosa growing on different mixtures of glucose and olive oil. Journal of Fermentation and Bioengineering, 72(5), 399–401. https://doi.org/10.1016/0922-338X(91)90095-X.

    Article  CAS  Google Scholar 

  44. Sokolovská, I., Albasi, C., Riba, J. P., & Báleš, V. (1998). Production of extracellular lipase by Candida cylindracea CBS 6330. Bioprocess Engineering, 19(3), 179–186. https://doi.org/10.1007/s004490050503.

    Article  Google Scholar 

  45. Hernáiz, M. J., Rua, M., Celda, B., Medina, P., Sinisterra, J. V., & Sánchez-Montero, J. M. (1994). Contribution to the study of the alteration of lipase activity of Candida rugosa by ions and buffers. Applied Biochemistry and Biotechnology, 44(3), 213–229. https://doi.org/10.1007/BF02779658.

    Article  PubMed  Google Scholar 

  46. Kumari, A., & Gupta, R. (2012). Extracellular expression and characterization of thermostable lipases, LIP8, LIP14 and LIP18, from Yarrowia lipolytica. Biotechnology Letters, 34(9), 1733–1739. https://doi.org/10.1007/s10529-012-0958-8.

    Article  CAS  PubMed  Google Scholar 

  47. Domínguez De María, P., Sánchez-Montero, J. M., Sinisterra, J. V., & Alcántara, A. R. (2006). Understanding Candida rugosa lipases: an overview. Biotechnology Advances, 24(2), 180–196. https://doi.org/10.1016/j.biotechadv.2005.09.003.

    Article  CAS  PubMed  Google Scholar 

  48. Illanes, A. (2008). Enzyme biocatalysis. In A. Illanes (Ed.), Enzyme Biocatalysis: Principles and Applications. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-8361-7.

    Chapter  Google Scholar 

Download references

Funding

The study is funded by CAPES, CNPq, and FUNCAP (from Brazil) for the financial support that made this work possible. In addition, the study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit, the BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020-Programa Operacional Regional do Norte, and the Project LIGNOZYMES (POCI-01-0145-FEDER-029773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana R. B. Gonçalves.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, M.d.F.M., Cavalcante, L.S., Gudiña, E.J. et al. Sustainable Lipase Production by Diutina rugosa NRRL Y-95 Through a Combined Use of Agro-Industrial Residues as Feedstock. Appl Biochem Biotechnol 193, 589–605 (2021). https://doi.org/10.1007/s12010-020-03431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03431-6

Keywords

Navigation