Skip to main content
Log in

Geodesic connectedness of affine manifolds

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We discuss new sufficient conditions under which an affine manifold \((M,\nabla )\) is geodesically connected. These conditions are shown to be essentially weaker than those discussed in groundbreaking work by Beem and Parker and in recent work by Alexander and Karr, with the added advantage that they yield an elementary proof of the main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is well known, again due to the absence of a Hopf–Rinow-like result, that compactness and geodesic completeness are unrelated in Lorentzian manifolds (cf. Example 7.17 in [20]).

  2. We remind the reader that a connected complete Riemannian manifold is said to be a Wiedersehen manifold if \(\mathrm{Conj}(p)\) is just one point for every \(p \in M\). The importance of these manifolds arises due to the so-called (original) Blaschke conjecture, which posited that any Wiedersehen manifolds of \(dim\ M=2\) are isometric to a round sphere \(\mathbb {S}^2\). This has been proven by Green [15], and the analogue statement in higher dimensions has been proven by Berger, Kazdan, Weinstein and Yang [10, 18, 23, 24].

  3. Here and hereafter, smooth means \(C^{\infty }\) and manifolds for us always mean real, smooth, finite-dimensional, Hausdorff, second-countable manifolds.

  4. As proven in [16], this condition is equivalent to precompactness of the holonomy group of (Mg).

  5. In [22], the authors actually require that (Mg) be Ricci-flat, but their integral formula is easily seen to apply when one only has \(\mathrm{Ric}(V,V)\le 0\).

  6. When \(F=\exp _p\), we chose \({\mathcal {V}}\) to be a normal neighborhood of p.

References

  1. Alexander, S.B., Karr, W.A.: Convex functions and geodesic connectedness of space-times. Diff. Geom. Appl. Part B 54, 361–384 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bartolo, R.: Curvas críticas en variedades Riemannianas y Lorentzianas con borde, Ph.D thesis, Univ. Granada (2000). (In Spanish)

  3. Bates, L.: You can’t get there from here. Differ. Geom. Appl. 8(3), 273–274 (1998)

    Article  MathSciNet  Google Scholar 

  4. Beem, J.K.: Disprisoning and pseudoconvex manifolds. Proc. Symp. Pure Math 54, 19–26 (1993). Part 2

    Article  MathSciNet  Google Scholar 

  5. Beem, J.K., Ehrlich, P.E., Easley, K.: Global Lorentzian Geometry. Marcel Dekker Inc., New York (1981)

    MATH  Google Scholar 

  6. Beem, J.K., Parker, P.E.: Pseudoconvexity and general relativity. J. Geom. Phys. 4, 71–80 (1987)

    Article  MathSciNet  Google Scholar 

  7. Beem, J.K., Parker, P.E.: Pseudoconvexity and geodesic connectedness. Ann. Mat. Pura Appl. 155, 137–142 (1989)

    Article  MathSciNet  Google Scholar 

  8. Benci, V., Fortunato, D.: Existence of geodesics for the Lorentz metric of a stationary gravitational field. Ann. Inst. Henri Poincaré 7, 27–35 (1990)

    Article  MathSciNet  Google Scholar 

  9. Benci, V., Fortunato, D.: Periodic trajectories for the Lorentz metric of a static gravitational field. In: Beresticky, H., Coron, J.M., Ekeland, I. (eds.) Proceedings on Variational Methods, pp. 413–429. Paris (1988)

  10. Berger, M.: Sur certaines variétés à géodésiques toutes fermées. Bol. Soc. Brasil. Mat. 9(2), 89–96 (1978)

    Article  MathSciNet  Google Scholar 

  11. Calabi, E., Markus, L.: Relativistic space forms. Ann. Math. 75, 63–76 (1962)

    Article  MathSciNet  Google Scholar 

  12. Candela, A.M., Sánchez, M.: Geodesic connectedness in Gödel type space-times Diff. Geom. Appl. 12, 105–120 (2000)

    Article  MathSciNet  Google Scholar 

  13. Candela, A.M., Sánchez, M.: Geodesics in semi-Riemannian manifolds: geometric properties and variational tools. In: Alekseevsky, D.V., Baum, H. (eds.) Recent Developments in Pseudo-Riemannian Geometry, Special Volume in the ESI-Series on Mathematics and Physics, pp. 359–418. EMS Publishing House, Zurich (2008)

    Chapter  Google Scholar 

  14. Flores, J.L.: Conectividad Geodésica en algunos espaciotiempos: Un Método Topológico, Ph.D thesis, Univ. Granada (2002). (In Spanish)

  15. Green, L.W.: Auf Wiedersehensflachen. Ann. Math. (2) 78, 289–299 (1963)

    Article  MathSciNet  Google Scholar 

  16. Gutiérrez, M., Müller, O.: Compact Lorentzian holonomy. Diff. Geom. Appl. 48, 11–22 (2016)

    Article  MathSciNet  Google Scholar 

  17. Karr, W.A.: Convexity and curvature in Lorentzian geometry. PhD. Dissertation, Un. of Illinois at Urbana-Champaign (2017)

  18. Kazdan, J.L.: An isoperimetric inequality and Wiedersehen manifolds. Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, pp. 143–157 (1982)

  19. Sánchez, M.: Geodesic connectedness of semi-Riemannian manifolds. Nonlinear Anal. 47, 3085–3102 (2001)

    Article  MathSciNet  Google Scholar 

  20. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics vol. 103 (Book 103). Academic Press, New York (1983)

    Google Scholar 

  21. Romero, A., Sánchez, M.: Compact Lorentz manifolds admitting a timelike conformal killing vector field. Proc. Am. Math. Soc. 123(9), 2831–2833 (1995)

    Article  MathSciNet  Google Scholar 

  22. Romero, A., Sánchez, M.: An integral inequality on compact Lorentz manifolds and its applications. Bull. Lond. Math. Soc. 28, 509–513 (1996)

    Article  MathSciNet  Google Scholar 

  23. Weinstein, A.: On the volume of manifolds all of whose geodesics are closed. J. Differ. Geom. 9, 513–517 (1974)

    Article  MathSciNet  Google Scholar 

  24. Yang, C.T.: Odd-dimensional wiedersehen manifolds are spheres. J. Differ. Geom. 15(1), 91–96 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are partially supported by the Project MTM2016-78807-C2-2-P (Spanish MINECO with FEDER funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan P. Costa e Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa e Silva, I.P., Flores, J.L. Geodesic connectedness of affine manifolds. Annali di Matematica 200, 1135–1148 (2021). https://doi.org/10.1007/s10231-020-01028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-01028-8

Keywords

Mathematics Subject Classification

Navigation