Skip to main content
Log in

Effects of Red and Blue Light with Supplemental White Light on Growth, Carbohydrate Metabolism, and Yield of Virus-Free Potato in Plant Factories

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The light spectrum has a strong effect on potato tuber development. To investigate the effect of varying the spectrum on potato tuber growth and yield, potato plantlets were transplanted under red/white light (RW; red light: 200 μmol m−2 s−1; white light: 100 μmol m−2 s−1), blue/white light (BW; blue light: 200 μmol m−2 s−1; white light: 100 μmol m−2 s−1), and white/red/blue light (WRB; white light: 100 μmol m−2 s−1; red light: 100 μmol m−2 s−1; blue light: 100 μmol m−2 s−1) with a 11/13-h (light/dark) photoperiod. Potato plants grown under RW had the highest mean fresh tuber weight and total yield among all treatments. Plants under RW resulted in the highest shoot dry weight at 30 d and 45 d among all treatments, providing a photosynthetic source for the tubers. Furthermore, the photosynthetic leaves under RW had a significantly higher total chlorophyll content than other treatments at 90 d. Plants under RW significantly increased tuber fresh weight per plant by 57.7% from 60 to 90 d. The spectrum of BW benefited potato bulking. Plants under BW at 40 d resulted in significant sucrose and starch changes between day and night compared with those at 20 d. BW had a positive effect on the activities of ADP-glucose pyrophosphorylase at 40 d and sucrose synthase at 60 d compared with RW and WRB during the day. Thus, the ratio of tuber (fresh weight of tuber ≥2.0 g) under BW was significantly higher than that under RW and WRB. The total yield of tubers under WRB was the lowest among all treatments.

Resumen

El espectro de luz tiene un fuerte efecto en el desarrollo del tubérculo de papa. Para investigar el efecto de variación del espectro en el crecimiento y rendimiento del tubérculo en papa, se trasplantaron plántulas de papa bajo luz roja/blanca (RW; luz roja: 200 μmol m-2 s-1; luz blanca: 100 μmol m-2 s-1), luz azul/blanca (BW; luz azul: 200 μmol m-2 s-1; luz blanca: 100 μmol m-2 s-1), y luz blanca/roja/azul (WRB; luz blanca: 100 μmol m-2 s-1; luz roja: 100 μmol m-2 s-1; luz azul: 100 μmol m-2 s-1) con un fotoperíodo de 11/13-h (luz/oscuridad). Las plantas de papa que crecieron bajo luz RW tuvieron la media mas alta de peso fresco de tubérculo y de rendimiento total entre todos los tratamientos. Las plantas bajo RW resultaron en el mayor peso seco de tallo a los 30 y 45 d entre todos los tratamientos, suministrando una fuente fotosintética para los tubérculos. Aun más, las hojas fotosintéticas bajo RW tuvieron significativamente mas alto contenido total de clorofila que los otros tratamientos a los 90 d. Las plantas bajo RW incrementaron significativamente el peso fresco de tubérculo por planta en 57.7% de 60 a 90 d. El espectro de BW benefició el llenado del tubérculo. Las plantas bajo BW a los 40 d resultaron en significativos cambios en sacarosa y almidón entre el día y la noche en comparación con las de 20 d. BW tuvo un efecto positivo en la actividad de ADP-glucosa pirofosforilasa a los 40 d y de sacarosa sintetasa a los 60 d en comparación con RW y WRB durante el día. Entonces, la relación de tubérculo (peso fresco de tubérculo ≥2.0 g) bajo BW fue significativamente mayor que bajo RW y WRB. El rendimiento total de tubérculos bajo WRB fue el menor entre todos los tratamientos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnon, D.L. 1949. Copper enzymer in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology 24: 1–15.

    Article  CAS  Google Scholar 

  • Bantis, F., A. Koukounaras, A.S. Siomos, M.N. Fotelli, and D. Kintzonidis. 2020. Bichromatic red and blue LEDs during healing enhance the vegetative growth and quality of grafted watermelon seedlings. Scientia Horticulturae 261.

  • Baroja-Fernández, E., F.J. Muñoz, J. Li, A. Bahaji, G. Almagro, M. Montero, Ed Etxeberria, T.M. Sesma, and J. Pozueta-Romero. 2012. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proceedings of the National Academy of Sciences of the United States of America 109: 321–326.

    Article  Google Scholar 

  • Berkovich, Y.A., I.O. Konovalova, S.O. Smolyanina, A.N. Erokhin, O.V. Avercheva, E.M. Bassarskaya, G.V. Kochetova, T.v. Zhigalova, O.S. Yakovleva, and I.G. Tarakanov. 2017. LED crop illumination inside space greenhouses. Reach Reviews in Human Space Exploration 6: 11–24.

  • Briggs, W.R. 1993. New light on stem growth. Nature 366: 110–111.

    Article  CAS  Google Scholar 

  • Chen, X.L., X.Z. Xue, W.Z. Guo, L.C. Wang, and X.J. Qiao. 2016. Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Scientia Horticulturae 200: 111–118.

    Article  CAS  Google Scholar 

  • Chen, Y.Y., B. Zhou, J.L. Li, H. Tang, J.C. Tang, and Z.Y. Yang. 2018. Formation and change of chloroplast-located plant metabolites in response to light conditions. International Journal of Molecular Sciences 19 (3): 654.

    Article  Google Scholar 

  • Cope, K.R., M.C. Snowden, and B. Bugbee. 2014. Photobiological interactions of blue light and photosynthetic photon flux: Effects of monochromatic and broad-spectrum light sources. Photochemistry and Photobiology 90: 574–584.

    Article  CAS  Google Scholar 

  • Drozdova, I.S., V.V. Bondar, N.G. Bukhov, A.A. Kotov, L.M. Kotova, S.N. Maevskaya, and A.T. Mokronosov. 2001. Effects of light spectral quality on morphogenesis and source–sink relations in radish plants. Russian Journal of Plant Physiology 48: 415–420.

    Article  CAS  Google Scholar 

  • Fairbairn, N.J. 1953. A modified anthrone reagent. Chemistry & Industry 4: 86.

    Google Scholar 

  • Folta, K.M. 2019. Breeding new varieties for controlled environments. Plant Biology 21 (SI(1)): 6–12.

    Article  Google Scholar 

  • Gukasyan, I.A., T.N. Konstantinova, L.V. Chistyakova, and N.P. Aksenova. 1994. Effects of day length and light quality on the ultrastructure of the palisade parenchyma cells of potato plants. Russian Journal of Plant Physiology 41 (1): 24–29.

    Google Scholar 

  • Huber, S.C., and J.L. Huber. 1996. Role and regulation of sucrose-phosphate synthase in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 47: 431–444.

    Article  CAS  Google Scholar 

  • Jao, R.C., and W. Fang. 2004. Effects of frequency and duty ratio on the growth of potato plantlets invirto using light-emitting diodes. Hortscience 39 (2): 375–379.

    Article  Google Scholar 

  • Johkan, M., K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany 75: 128–133.

    Article  CAS  Google Scholar 

  • Jungandreas, A., B.S. Costa, T. Jakob, M.V. Bergen, S. Baumann, and C. Wilhelm. 2014. The acclimation of phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. PLoS One 9 (8): e99727.

    Article  Google Scholar 

  • Kim, Y.H., and M.G. Lee. 2004. Tuber production and growth of potato transplants grown under different light quality. VII International Symposium on Protected Cultivation in Mild Winter Climates: Production. Acta Horticulturae 659: 267–272.

    Article  Google Scholar 

  • Kim, H.R., and Y.H. You. 2013. Effects of red, blue, white, and far-red led source on growth responses of wasabia japonica seedlings in plant factory. Korean Journal of Horticultural Science & Technology 31 (4): 415–422.

    Article  Google Scholar 

  • Kitayama, M., D.T.P. Nguyen, N. Lu, and M. Takagaki. 2019. Effect of light quality on physiological disorder, growth, and secondary metabolite content of water spinach (Ipomoea aquatica forsk) cultivated in a closed-type plant production system. Horticultural Science and Technology 37 (2): 206–218.

  • Kyoko, H.T., and E. Hiroshi. 2016. Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories. Frontiers in Plant Science 7(539): 1–7.

  • Lee, Y.I., W. Fang, and C.C. Chen. 2011. Histological observation on the growth of potato plantlets in vitro under six different led light qualities. Acta Horticulturae 907: 393–395.

    Article  Google Scholar 

  • Li, H.M., Z.G. Xu, and C.M. Tang. 2010. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture 103: 155–163.

    Article  Google Scholar 

  • Li, C., D. Liu, L.L. Li, S.X. Hu, Z.G. Xu, and C.M. Tang. 2018. Effects of light-emitting diodes on the growth of Peanut plants. Agronomy Journal 110 (6): 2369–2377.

    Article  CAS  Google Scholar 

  • Lim, Y.J., and S.H. Eom. 2013. Effects of different light types on root formation of ocimum basilicum L. cuttings. Scientia Horticulturae 164: 552–555.

    Article  CAS  Google Scholar 

  • Lin, K.H., M.Y. Huang, W.D. Huang, et al. 2013. The effect of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae 150: 86–91.

    Article  Google Scholar 

  • Matsuda, R., T. Yamano, K. Murakami, and K. Fujiwara. 2016. Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury. Scientia Horticulturae 198: 363–369.

    Article  CAS  Google Scholar 

  • Miyashita, Y., Kimura, T., Kitaya, Y., Kubota, C., Kozai, T., 1997. Effects of red light on the growth and morphology of potato plantlets in vitro: Using light emitting diodes (LEDs) as a light source for micropropagation. Third International Symposium on Artificial Lighting In Horticulture, Acta Hortic. 418: 169–173.

  • Mugford, S.T., O. Fernandez, J. Brinton, A. Flis, N. Krohn, B. Encke, R. Feil, R. Sulpice, J.E. Lunn, M. Stitt, and A.M. Smith. 2014. Regulatory properties of adp glucose pyrophosphorylase are required for adjustment of leaf starch synthesis in different photoperiods. Plant Physiology 166 (4): 1733–1747.

    Article  Google Scholar 

  • Müller-Röber, B., U. Sonnewald, and L. Willmitzer. 1992. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. The EMBO Journal 11: 1229–1238.

    Article  Google Scholar 

  • Poulet, L., G.D. Massa, R.C. Morrow, C.M. Bourget, R.M. Wheeler, and C.A. Mitchell. 2014. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation. Life Sciences in Space Research 2: 43–53.

    Article  Google Scholar 

  • Saleem, M.H., M. Rehman, M. Zahid, M. Imran, W. Xiang, and L.J. Liu. 2019. Morphological changes and antioxidative capacity of jute (Corchorus capsularis, Malvaceae) under different color light-emitting diodes. The Brazilian Journal of Botany 42 (4): 581–590.

    Article  Google Scholar 

  • Samuolienė, G., R. Sirtautas, A. Brazaitytė, J. Sakalauskaitė, S. Sakalauskienė, and P. Duchovskis. 2011. The impact of red and blue light-emitting diode illumination on radish physiological indices. Central European Journal of Biology 6: 821–828.

    Google Scholar 

  • Son, K.H., and M.M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. Hortiscience 48(8): 988–995.

  • Stein, O., and D. Granot. 2019. An overview of sucrose synthesis in plants. Frontiers in Plant Science 10 (95): 1–14.

    Google Scholar 

  • Struik, P.C., D. Vreugdenhil, A.J. Haverkort, C.B. Bus, and R. Dankert. 1991. Possible mechanisms of size hierarchy among tubers on one stem of a potato (Solanum tuberosum, L.) plant. Potato Research 34 (2): 187–203.

    Article  Google Scholar 

  • Tauberger, E., A.R. Fernie, M. Emmermann, A. Renz, J. Kossmann, L. Willmitzer, and R.N. Trethewey. 2000. Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate. The Plant Journal 23 (1): 43–53.

    Article  CAS  Google Scholar 

  • Taylor, M.A., S.A. Mad Arif, A. Kumar, H.V. Davies, L.A. Scobie, S.R. Pearce, and A.J. Flawell. 1992. Expression and sequence analysis of cDNAs induced during the early stages of tuberization in different organs of the potato plant (Solanum tuberosum, L.). Plant Molecular Biology 20: 641–651.

    Article  CAS  Google Scholar 

  • Thiele, A., M. Herold, I. Lenk, and Q.C. Gatz. 1999. Heterologous expression of arabidopsis phytochrome b in transgenic potato influences photosynthetic performance and tuber development. Plant Physiology 120 (1): 73–81.

    Article  CAS  Google Scholar 

  • Tiwari, J.K., P. Darren, G. Trevor, S.K. Chakrabarti, and R.K. Singh. 2018. Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: Translating knowledge from other crops. Functional Plant Biology 45 (6): 587–605.

    Article  CAS  Google Scholar 

  • Tuncel, A., and T.W. Okita. 2013. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: Expectations and unanticipated outcomes. Plant Science 211: 52–60.

    Article  CAS  Google Scholar 

  • Wang, J., W. Lu, Y.X. Tong, and Q.C. Yang. 2016. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science 7: 250.

    PubMed  PubMed Central  Google Scholar 

  • Xu, Z.G., X.X. Wang, S. Chen, and L.J. Gan. 2018. Optimal regulation of nutrient solution types and concentrations for virus-free seed potato breeding in plant factory. Transactions of the CSAE 34 (17): 199–206.

    Google Scholar 

  • Yorio, N.C., G.D. Goins, H.R. Kagie, R.M. Wheeler, and J.C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light emitting diodes LEDs with blue light supplementation. HortScience 36: 380–383.

    Article  CAS  Google Scholar 

  • Yu, W.W., Y. Liu, and L.L. Song. 2017. Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. Journal of Plant Growth Regulation 36 (1): 148–160.

    Article  CAS  Google Scholar 

  • Zha, L., and W. Liu. 2018. Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue leds. Horticulture, Environment, and Biotechnology 59 (4): 511–518.

    Article  CAS  Google Scholar 

  • Zheng, L., H.M. He, and W.T. Song. 2019. Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. Hortiscience 54 (10): 1656–1661.

    Article  CAS  Google Scholar 

  • Zhu, X.D., C.B. Zhang, W.M. Wu, X.P. Li, C. Zhang, and J.G. Fang. 2017. Enzyme activities and gene expression of starch metabolism provide insights into grape berry development. Horticulture Research: Nature Pubkishing Group, Macmillan Building, 4 Crinan St, London N1 9XW, England.

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (2017YFB0403903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Gan or Zhi-Gang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Miao, C., You, J. et al. Effects of Red and Blue Light with Supplemental White Light on Growth, Carbohydrate Metabolism, and Yield of Virus-Free Potato in Plant Factories. Am. J. Potato Res. 97, 554–564 (2020). https://doi.org/10.1007/s12230-020-09803-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-020-09803-2

Keywords

Navigation