Skip to main content

Advertisement

Log in

Adsorption of hydrogen and carbon dioxide in zeolitic imidazolate framework structure with SOD topology: experimental and modelling studies

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The aim of this work is to develop insights into adsorption of hydrogen and carbon dioxide in a zeolitic imidazolate framework, ZIF-8, using high-pressure adsorption studies, adsorption isotherm model fitting, and DFT investigation of preferential adsorption sites and binding energies. The robustness of ZIF series metal–organic frameworks has drawn interest towards its utility in large scale applications in gas storage and separation. We use room temperature synthesis of ZIF-8 using DMF as a solvent, and benchmarked it against typical solvothermal synthesis. The resulting material is characterized using XRD, SEM, TG–DSC and N2 adsorption isotherm. High-pressure volumetric adsorption of the activated materials is conducted to analyze the hydrogen and carbon dioxide storage capacities up to 50 and 40 bar, respectively. ZIF-8 shows maximum H2 storage capacity of 3.13 wt% at 50 bar and 77 K, and CO2 storage capacity of 46 wt% at 40 bar and 300 K. The parameters of Unilan adsorption isotherm are estimated from the equilibrium adsorption data and isosteric heats of adsorption for H2 and CO2 on ZIF-8 are computed. DFT calculations are used to obtain preferential adsorption sites of H2 and CO2. Adsorption enthalpy values were calculated from DFT as − 7.08 and − 25.98 kJ/mol, respectively for H2 and CO2 at the most preferred sites. We found a close agreement between isosteric heat of adsorption of hydrogen (− 4.68 kJ/mol) and the enthalpy of hydrogen adsorption from DFT (− 6.04 kJ/mol) at 77 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Autié-Castro, G., de Oliveira Jardim, E., Reguera, E., Vilarrasa-Garcia, E., Rodriguez-Castellon, E., Cavalcante, C.L.: CH4 and CO2 adsorption study in ZIF-8 and Al-BDC MOFs. Biol. Chem. Res. 4, 234–246 (2017)

    Google Scholar 

  • Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O’Keeffe, M., Yaghi, O.M.: Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131, 3875–3877 (2009)

    CAS  PubMed  Google Scholar 

  • Ben-Mansour, R., Habib, M.A., Bamidele, O.E., Basha, M., Qasem, N.A.A., Peedikakkal, A., Laoui, T., Ali, M.: Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review. Appl. Energy 161, 225–255 (2016)

    CAS  Google Scholar 

  • Bose, R., Ethiraj, J., Selvam, P.: High pressure CO2 adsorption studies on zeolitic imidazolate framework structure, ZIF-8. In: 13th International Conference on Fundamentals of Adsorption, Cairns, May 26–31 (2019).

  • Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A., Hackett, L.A., Hallett, J.P., Herzog, H.J., Jackson, G., Kemper, J., Krevor, S., Maitland, G.C., Matuszewski, M., Metcalfe, I.S., Petit, C., Puxty, G., Reimer, J., Reiner, D.M., Rubin, E.S., Scott, S.A., Shah, N., Smit, B., Trusler, J.P.M., Webley, P., Wilcox, J., Mac Dowell, N.: Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018)

    CAS  Google Scholar 

  • Chen, B., Yang, Z., Zhu, Y., Xia, Y.: Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2, 16811–16831 (2014)

    CAS  Google Scholar 

  • Cravillon, J., Münzer, S., Lohmeier, S.J., Feldhoff, A., Huber, K., Wiebcke, M.: Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21, 1410–1412 (2009)

    CAS  Google Scholar 

  • Cravillon, J., Nayuk, R., Springer, S., Feldhoff, A., Huber, K., Wiebcke, M.: Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23, 2130–2141 (2011)

    CAS  Google Scholar 

  • Dai, J., Xiao, X., Duan, S., Liu, J., He, J., Lei, J., Wang, L.: Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water. Chem. Eng. J. 331, 64–74 (2018)

    CAS  Google Scholar 

  • Danaci, D., Singh, R., Xiao, P., Webley, P.A.: Assessment of ZIF materials for CO2 capture from high pressure natural gas streams. Chem. Eng. J. 280, 486–493 (2015)

    CAS  Google Scholar 

  • DeSantis, D., Mason, J.A., James, B.D., Houchins, C., Long, J.R., Veenstra, M.: Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage. Energy Fuels 31, 2024–2032 (2017)

    CAS  Google Scholar 

  • Dundar, E., Zacharia, R., Chahine, R., Bénard, P.: Fluid phase equilibria performance comparison of adsorption isotherm models for supercritical hydrogen sorption on MOFs. Fluid Phase Equilib. 363, 74–85 (2014)

    CAS  Google Scholar 

  • Erkartal, M., Erkilic, U., Tam, B., Usta, H., Yazaydin, O., Hupp, J.T., Farha, O.K., Sen, U.: From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chem. Commun. 53, 2028–2031 (2017)

    CAS  Google Scholar 

  • Ethiraj, J., Bose, R., Selvam, P.: CO2 capture in cobalt imidazolate metal organic framework, ZIF-67. In: Conference on Carbon Capture and Its Utilization, Pune, December 14–15 (2018).

  • Fischer, M., Bell, R.G.: Interaction of hydrogen and carbon dioxide with sod-type zeolitic imidazolate frameworks: a periodic DFT-D study. CrystEngComm 16, 1934 (2014)

    CAS  Google Scholar 

  • Gadipelli, S., Travis, W., Zhou, W., Guo, Z.: A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ. Sci. 7, 2232–2238 (2014)

    CAS  Google Scholar 

  • Gomez, D.A., Combariza, A.F., Sastre, G.: Quantum-chemistry calculations of hydrogen adsorption in MOF-5. Phys. Chem. Chem. Phys. 11, 9250–9258 (2009)

    CAS  PubMed  Google Scholar 

  • Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    CAS  PubMed  Google Scholar 

  • Gross, A.F., Sherman, E., Vajo, J.J.: Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans. 41, 5458–5460 (2012)

    CAS  PubMed  Google Scholar 

  • Hayashi, H., Côté, A.P., Furukawa, H., O’Keeffe, M., Yaghi, O.M.: Zeolite A imidazolate frameworks. Nat. Mater. 6, 501–506 (2007)

    CAS  PubMed  Google Scholar 

  • Hobday, C.L., Woodall, C.H., Lennox, M.J., Frost, M., Kamenev, K., Düren, T., Morrison, C.A., Moggach, S.A.: Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nat. Commun. 9, 1429 (2018)

    PubMed  PubMed Central  Google Scholar 

  • Hwang, H.T., Varma, A.: Hydrogen storage for fuel cell vehicles. Curr. Opin. Chem. Eng. 5, 42–48 (2014)

    Google Scholar 

  • Kloutse, A.F., Zacharia, R., Cossement, D., Chahine, R., Balderas-Xicohténcatl, R., Oh, H., Streppel, B., Schlichtenmayer, M., Hirscher, M.: Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models. Appl. Phys. A 121, 1417–1424 (2015)

    CAS  Google Scholar 

  • Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    CAS  Google Scholar 

  • Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    CAS  Google Scholar 

  • Langmi, H.W., Ren, J., North, B., Mathe, M., Bessarabov, D.: Hydrogen storage in metal-organic frameworks: a review. Electrochim. Acta. 128, 368–392 (2017)

    Google Scholar 

  • Liu, D., Wu, Y., Xia, Q., Li, Z., Xi, H.: Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption 19, 25–37 (2013)

    Google Scholar 

  • Liu, Q., Zhou, B., Xu, M., Mao, G.: Integration of nanosized ZIF-8 particles onto mesoporous TiO2 nanobeads for enhanced photocatalytic activity. RSC Adv. 7, 8004–8010 (2017)

    CAS  Google Scholar 

  • Mohan, T.V.R., Palla, S., Kuppan, B., Kaisare, N.S., Selvam, P.: Hydrogen sorption characteristics of ordered mesoporous carbons: experimental and modeling view point. J. Chem. Eng. Data 63, 4543–4551 (2018)

    CAS  Google Scholar 

  • Morris, W., Leung, B., Furukawa, H., Yaghi, O.K., He, N., Hayashi, H., Houndonougbo, Y., Asta, M., Laird, B.B., Yaghi, O.M.: A combined experimental−computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. J. Am. Chem. Soc. 132, 11006–11008 (2010)

    CAS  PubMed  Google Scholar 

  • Morris, W., He, N., Ray, K.G., Klonowski, P., Furukawa, H., Daniels, I.N., Houndonougbo, Y.A., Asta, M., Yaghi, O.M., Laird, B.B.: A combined experimental-computational study on the effect of topology on carbon dioxide adsorption in zeolitic imidazolate frameworks. J. Phys. Chem. C 116, 24084–24090 (2012)

    CAS  Google Scholar 

  • Nune, S.K., Thallapally, P.K., Dohnalkova, A., Wang, C., Liu, J., Exarhos, G.J.: Synthesis and properties of nano zeolitic imidazolate frameworks. Chem. Commun. 46, 4878–4880 (2010)

    CAS  Google Scholar 

  • Palla, S., Kaisare, N.S.: A critical analysis of transport models for refueling of MOF-5 based hydrogen adsorption system. J. Ind. Eng. Chem. (2020) (in press)

  • Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103, 10186–10191 (2006)

    CAS  PubMed  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    CAS  Google Scholar 

  • Pérez-Pellitero, J., Amrouche, H., Siperstein, F.R., Pirngruber, G., Nieto-Draghi, C., Chaplais, G., Simon-Masseron, A., Bazer-Bachi, D., Peralta, D., Bats, N.: Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: experiments and simulations. Eur. J. Inorg. Chem. 16, 1560–1571 (2010)

    Google Scholar 

  • Purewal, J., Liu, D., Sudik, A., Veenstra, M., Yang, J., Maurer, S., Miller, U., Siegel, D.J.: Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J. Phys. Chem. C 116, 20199–20212 (2012)

    CAS  Google Scholar 

  • Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., Gupta, R.: Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51, 1438–1463 (2012)

    CAS  Google Scholar 

  • Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W.: Hydrogen storage in metal-organic frameworks. Chem. Rev. 112, 782–835 (2012)

    CAS  PubMed  Google Scholar 

  • Sumida, K., Rogow, D.L., Mason, J.A., Mcdonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T., Long, R.: Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)

    CAS  PubMed  Google Scholar 

  • Walton, K.S., Snurr, R.Q.: Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007)

    CAS  PubMed  Google Scholar 

  • Wang, B., Côté, A.P., Furukawa, H., O’Keeffe, M., Yaghi, O.M.: Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008)

    CAS  PubMed  Google Scholar 

  • Wee, L.H., Lescouet, T., Ethiraj, J., Bonino, F., Vidruk, R., Garrier, E., Packet, D., Bordiga, S., Farrusseng, D., Herskowitz, M., Martens, J.A.: Hierarchical zeolitic imidazolate framework-8 catalyst for monoglyceride synthesis. ChemCatChem 5, 3562–3566 (2013)

    CAS  Google Scholar 

  • Wu, H., Zhou, W., Yildirim, T.: Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J. Am. Chem. Soc. 129, 5314–5315 (2007)

    CAS  PubMed  Google Scholar 

  • Xiang, Z., Cao, D.: Porous covalent-organic materials: synthesis, clean energy application and design. J. Mater. Chem. A 1, 2691–2718 (2013)

    CAS  Google Scholar 

  • Yazaydın, A.Ö., Snurr, R.Q., Park, T.-H., Koh, K., Liu, J., LeVan, M.D., Benin, A.I., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J.J., Willis, R.R.: Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009)

    PubMed  Google Scholar 

  • Yu, J., Xie, L.H., Li, J.R., Ma, Y., Seminario, J.M., Balbuena, P.B.: CO2 Capture and separations using MOFs: computational and experimental studies. Chem. Rev. 117, 9674–9754 (2017)

    CAS  PubMed  Google Scholar 

  • Zhao, M., Minett, A.I., Harris, A.T.: A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy Environ. Sci. 6, 25–40 (2013)

    CAS  Google Scholar 

  • Zhou, W., Wu, H., Hartman, M.R., Yildirim, T.: Hydrogen and methane adsorption in metal-organic frameworks: a high-pressure volumetric study. J. Phys. Chem. C 111, 16131–16137 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DST-SERB for supporting NCCR, IIT-Madras. One of the authors (P.S.) thank MNRE for financial support under Grant: 103/140/2008-NT. JJV acknowledges financial support from IIT-Madras for the work. The DFT calculations were performed on the IITM-HPC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parasuraman Selvam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, R., Ethiraj, J., Sridhar, P. et al. Adsorption of hydrogen and carbon dioxide in zeolitic imidazolate framework structure with SOD topology: experimental and modelling studies. Adsorption 26, 1027–1038 (2020). https://doi.org/10.1007/s10450-020-00219-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00219-2

Keywords

Navigation