Skip to main content
Log in

Sources of particulate organic matter in the Chukchi and Siberian shelves: clues from carbon and nitrogen isotopes

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The stable isotopic composition (δ13C and δ15N) and carbon/nitrogen ratio (C/N) of particulate organic matter (POM) in the Chukchi and East Siberian shelves from July to September, 2016 were measured to evaluate the spatial variability and origin of POM. The δ13CPOC values were in the range of −29.5‰to −17.5‰ with an average of −25.9‰±2.09‰, and the δ15NPN values ranged from 3.9‰ to 13.1‰ with an average of 8.0‰±1.6‰. The C/N ratios in the East Siberian shelf were generally higher than those in the Chukchi shelf, while the δ13C and δ15N values were just the opposite. Abnormally low C/N ratios (<4), low δ13CPOC (almost −28%) and high δ15NPN (>10‰) values were observed in the Wrangel Island polynya, which was attributed to the early bloom of small phytoplankton. The contributions of terrestrial POM, bloom-produced POM and non-bloom marine POM were estimated using a three end-member mixing model. The spatial distribution of terrestrial POM showed a high fraction in the East Siberian shelf and decreased eastward, indicating the influence of Russian rivers. The distribution of non-bloom marine POM showed a high fraction in the Chukchi shelf with the highest fraction occurring in the Bering Strait and decreased westward, suggesting the stimulation of biological production by the Pacific inflow in the Chukchi shelf. The fractions of bloom-produced POM were highest in the winter polynya and gradually decreased toward the periphery. A negative relationship between the bloom-produced POM and the sea ice meltwater inventory was observed, indicating that the net sea ice loss promotes early bloom in the polynya. Given the high fraction of bloom-produced POM, the early bloom of phytoplankton in the polynyas may play an important role on marine production and POM export in the Arctic shelves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard K, Carmack E C. 1989. The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research: Oceans, 94(C10): 14485–14498, doi: https://doi.org/10.1029/JC094iC10p14485

    Article  Google Scholar 

  • Alkire M B, Morison J, Andersen R. 2015. Variability in the meteoric water, sea-ice melt, and Pacific water contributions to the central Arctic Ocean, 2000–2014. Journal of Geophysical Research: Oceans, 120(3): 1573–1598, doi: https://doi.org/10.1002/2014JC010023

    Google Scholar 

  • Ambrose W G, Renaud P E. 1995. Benthic response to water column productivity patterns: Evidence for benthic-pelagic coupling in the Northeast Water Polynya. Journal of Geophysical Research: Oceans, 100(C3): 4411–4421, doi: https://doi.org/10.1029/94JC01982

    Article  Google Scholar 

  • Anderson L G, Björk G, Jutterström S, et al. 2011. East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences, 8(6): 1745–1754, doi: https://doi.org/10.5194/bg-8-1745-2011

    Article  Google Scholar 

  • Ardyna M, Babin M, Devred E, et al. 2017. Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnology and Oceanography, 62(5): 2113–2132, doi: https://doi.org/10.1002/lno.10554

    Article  Google Scholar 

  • Arrigo K R. 2007. Physical control of primary productivity in Arctic and Antarctic polynyas. In: Smith W O, Barber D G, eds. Polynyas: Windows to the World. Elsevier Oceanography Series, 74: 223–238

  • Arrigo K R, Perovich D K, Pickart R S, et al. 2012. Massive phytoplankton blooms under Arctic sea ice. Science, 336(6087): 1408, doi: https://doi.org/10.1126/science.1215065

    Article  Google Scholar 

  • Arrigo K R, Perovich D K, Pickart R S, et al. 2014. Phytoplankton blooms beneath the sea ice in the Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 105: 1–16, doi: https://doi.org/10.1016/j.dsr2.2014.03.018

    Article  Google Scholar 

  • Arrigo K R, van Dijken G L. 2004. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 51(1–3): 117–138

    Article  Google Scholar 

  • Arrigo K R, van Dijken G L. 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research, 116(C9): C09011

    Article  Google Scholar 

  • Barber D G, Massom R A. 2007. The role of sea ice in Arctic and Antarctic polynyas. In: Smith W O, Barber D G, eds. Polynyas: Windows to the World. Elsevier Oceanography Series, 74: 1–54

  • Bhavya P S, Lee J H, Lee H W, et al. 2018. First in situ estimations of small phytoplankton carbon and nitrogen uptake rates in the Kara, Laptev, and East Siberian seas. Biogeosciences, 15(18): 5503–5517, doi: https://doi.org/10.5194/bg-15-5503-2018

    Article  Google Scholar 

  • Booth B C, Horner R A. 1997. Microalgae on the Arctic Ocean section, 1994: species abundance and biomass. Deep Sea Research Part II: Topical Studies in Oceanography, 44(8): 1607–1622, doi: https://doi.org/10.1016/S0967-0645(97)00057-X

    Article  Google Scholar 

  • Buchwald C. 2013. Nitrogen cycling in oxygen deficient zones: insights from δ15N and δ18O of nitrite and nitrate [dissertation]. Boston: Massachusetts Institute of Technology

    Book  Google Scholar 

  • Burkhardt S, Riebesell U, Zondervan I. 1999. Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochimica et Cosmochimica Acta, 63(22): 3729–3741, doi: https://doi.org/10.1016/S0016-7037(99)00217-3

    Article  Google Scholar 

  • Chalup M S, Laws E A. 1990. A test of the assumptions and predictions of recent microalgal growth models with the marine phytoplankter Pavlova lutheri. Limnology and Oceanography, 35(3): 583–596, doi: https://doi.org/10.4319/lo.1990.35.3.0583

    Article  Google Scholar 

  • Cooper L W, Benner R, McClelland J W, et al. 2005. Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. Journal of Geophysical Research-Biogeosciences, 110: G02013

    Article  Google Scholar 

  • Copin-Montegut C, Copin-Montegut G. 1983. Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep Sea Research Part A. Oceanographic Research Papers, 30(1): 31–46, doi: https://doi.org/10.1016/0198-0149(83)90031-6

    Article  Google Scholar 

  • Coupel P, Matsuoka A, Ruiz-Pino D, et al. 2015. Pigment signatures of phytoplankton communities in the Beaufort Sea. Biogeosciences, 12(4): 991–1006, doi: https://doi.org/10.5194/bg-12-991-2015

    Article  Google Scholar 

  • Crawford D W, Wyatt S N, Wrohan I A, et al. 2015. Low particulate carbon to nitrogen ratios in marine surface waters of the Arctic. Global Biogeochemical Cycles, 29(12): 2021–2033, doi: https://doi.org/10.1002/2015GB005200

    Article  Google Scholar 

  • Cronin G, Lodge D M. 2003. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia, 137(1): 32–41, doi: https://doi.org/10.1007/s00442-003-1315-3

    Article  Google Scholar 

  • Déry S J, Hernández-Henríquez M A, Burford J E, et al. 2009. Observational evidence of an intensifying hydrological cycle in northern Canada. Geophysical Research Letters, 36(13): L13402, doi: https://doi.org/10.1029/2009GL038852

    Article  Google Scholar 

  • Descolas-Gros C, Fontugne M R. 1985. Carbon fixation in marine phytoplankton: carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects. Marine Biology, 87(1): 1–6, doi: https://doi.org/10.1007/BF00396999

    Article  Google Scholar 

  • Devol A H, Codispoti L A, Christensen J P. 1997. Summer and winter denitrification rates in western Arctic shelf sediments. Continental Shelf Research, 17(9): 1029–1033, doi: https://doi.org/10.1016/S0278-4343(97)00003-4

    Article  Google Scholar 

  • Ehleringer J R, Cerling T E, Helliker B R. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112(3): 285–299, doi: https://doi.org/10.1007/s004420050311

    Article  Google Scholar 

  • Frank M. 1996. Spurenstoffuntersuchungen zur Zirkulation im Eurasischen Becken des Nordpolarmeeres [dissertation]. Heidelberg: Ruprecht Karls Universität

    Google Scholar 

  • Goericke R, Fry B. 1994. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochemical Cycles, 8(1): 85–90, doi: https://doi.org/10.1029/93GB03272

    Article  Google Scholar 

  • Gordeev V V, Martin J M, Sidorov I S, et al. 1996. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. American Journal of Science, 296(6): 664–691, doi: https://doi.org/10.2475/ajs.296.6.664

    Article  Google Scholar 

  • Gosselin M, Levasseur M, Wheeler P A, et al. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 44(8): 1623–1625, doi: https://doi.org/10.1016/S0967-0645(97)00054-4

    Article  Google Scholar 

  • Granger J, Sigman D M, Lehmann M F, et al. 2008. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnology and Oceanography, 53(6): 2533–2545, doi: https://doi.org/10.4319/lo.2008.53.6.2533

    Article  Google Scholar 

  • Guo Laodong, Cai Yihua, Belzile C, et al. 2012. Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. Biogeochemistry, 107(1–3): 187–206

    Article  Google Scholar 

  • Guo Laodong, Macdonald R W. 2006. Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Global Biogeochemical Cycles, 20(2): GB2011

    Article  Google Scholar 

  • He Jianfeng, Zhang Fang, Lin Ling, et al. 2012. Bacterioplankton and picophytoplankton abundance, biomass, and distribution in the Western Canada Basin during summer 2008. Deep Sea Research Part II: Topical Studies in Oceanography, 81–84: 36–45

    Article  Google Scholar 

  • Hoppema M, Anderson L G. 2007. Biogeochemistry of polynyas and their role in sequestration of anthropogenic constituents. In: Smith W O, Barber D G, eds. Polynyas: Windows to the World. Elsevier Oceanography Series, 74: 193–221

  • Hsiao S I C. 1992. Dynamics of ice algae and phytoplankton in Frobisher Bay. Polar Biology, 12(6): 645–651

    Google Scholar 

  • Klein B, LeBlanc B, Mei Zhiping, et al. 2002. Phytoplankton biomass, production and potential export in the North Water. Deep Sea Research Part II: Topical Studies in Oceanography, 49(22–23): 4983–5002

    Article  Google Scholar 

  • Kling G W, Fry B, O’Brien W J. 1992. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology, 73(2): 561–566, doi: https://doi.org/10.2307/1940762

    Article  Google Scholar 

  • Körtzinger A, Koeve W, Kähler W, et al. 2001. C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 48(3): 661–688, doi: https://doi.org/10.1016/S0967-0637(00)00051-0

    Article  Google Scholar 

  • Kuliński K, Kędra M, Legeżyńska J, et al. 2014. Particulate organic matter sinks and sources in high Arctic fjord. Journal of Marine Systems, 139: 27–37, doi: https://doi.org/10.1016/j.jmarsys.2014.04.018

    Article  Google Scholar 

  • Kumar V, Tiwari M, Nagoji S, et al. 2016. Evidence of anomalously low δ13C of marine organic matter in an Arctic fjord. Scientific Reports, 6(1): 36192, doi: https://doi.org/10.1038/srep36192

    Article  Google Scholar 

  • Landrum J P, Altabet M A, Montoya J P. 2011. Basin-scale distributions of stable nitrogen isotopes in the subtropical North Atlantic Ocean: Contribution of diazotroph nitrogen to particulate organic matter and mesozooplankton. Deep Sea Research Part I: Oceanographic Research Papers, 58(5): 615–625, doi: https://doi.org/10.1016/j.dsr.2011.01.012

    Article  Google Scholar 

  • Lehmann M F, Bernasconi S M, Barbieri A, et al. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 66(20): 3573–3584, doi: https://doi.org/10.1016/S0016-7037(02)00968-7

    Article  Google Scholar 

  • Lewis E L, Ponton D, Legendre L, et al. 1996. Springtime sensible heat, nutrients and phytoplankton in the Northwater Polynya, Canadian Arctic. Continental Shelf Research, 16(14): 1775–1781, doi: https://doi.org/10.1016/0278-4343(96)00015-5

    Article  Google Scholar 

  • Li Qi, Chen Min, Jia Renming, et al. 2017. Transit time of river water in the Bering and Chukchi Seas estimated from δ18O and radium isotopes. Progress in Oceanography, 159: 115–129, doi: https://doi.org/10.1016/j.pocean.2017.08.004

    Article  Google Scholar 

  • Li W K W, McLaughlin F A, Lovejoy C, et al. 2009. Smallest algae thrive as the Arctic Ocean freshens. Science, 326(5952): 539, doi: https://doi.org/10.1126/science.1179798

    Article  Google Scholar 

  • Lobbes J M, Fitznar H P, Kattner G. 2000. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta, 64(17): 2973–2983, doi: https://doi.org/10.1016/S0016-7037(00)00409-9

    Article  Google Scholar 

  • Macdonald R W, Carmack E C, McLaughlin F A, et al. 1999. Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre. Geophysical Research Letters, 26(15): 2223–2226, doi: https://doi.org/10.1029/1999GL900508

    Article  Google Scholar 

  • Macdonald R W, McLaughlin F A, Carmack E C. 2002. Fresh water and its sources during the SHEBA drift in the Canada Basin of the Arctic Ocean. Deep Sea Research Part I, 49(10): 1769–1785, doi: https://doi.org/10.1016/S0967-0637(02)00097-3

    Article  Google Scholar 

  • Magen C, Chaillou G, Crowe S A, et al. 2010. Origin and fate of particulate organic matter in the southern Beaufort Sea-Amundsen Gulf region, Canadian Arctic. Estuarine, Coastal and Shelf Science, 86: 31–41, doi: https://doi.org/10.1016/j.ecss.2009.09.009

    Article  Google Scholar 

  • Martin S, Drucker R. 1997. The effect of possible Taylor columns on the summer ice retreat in the Chukchi Sea. Journal of Geophysical Research: Oceans, 102(C5): 10473–10482, doi: https://doi.org/10.1029/97JC00145

    Article  Google Scholar 

  • Martiny A C, Pham C T A, Primeau F W, et al. 2013a. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience, 6(4): 279–283, doi: https://doi.org/10.1038/ngeo1757

    Article  Google Scholar 

  • Martiny A C, Vrugt J A, Primeau F W, et al. 2013b. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Global Biogeochemical Cycles, 27(3): 723–731, doi: https://doi.org/10.1002/gbc.20061

    Article  Google Scholar 

  • McClelland J W, Déry S J, Peterson B J, et al. 2006. A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophysical Research Letters, 33(6): L06715

    Article  Google Scholar 

  • McClelland J W, Holmes R M, Peterson B J, et al. 2008. Development of a pan-Arctic database for river chemistry. EOS, Transactions American Geophysical Union, 89(24): 217–218

    Article  Google Scholar 

  • McClelland J W, Holmes R M, Peterson B J, et al. 2016. Particulate organic carbon and nitrogen export from major Arctic rivers. Global Biogeochemical Cycles, 30(5): 629–643, doi: https://doi.org/10.1002/2015GB005351

    Article  Google Scholar 

  • McLaughlin F A, Carmack E C. 2010. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009. Geophysical Research Letters, 37(24): L24602

    Article  Google Scholar 

  • Montoya J P, McCarthy J J. 1995. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. Journal of Plankton Research, 17(3): 439–464, doi: https://doi.org/10.1093/plankt/17.3.439

    Article  Google Scholar 

  • Moore G W K, Pickart R S. 2012. The Wrangel Island Polynya in early summer: Trends and relationships to other polynyas and the Beaufort Sea High. Geophysical Research Letters, 39(5): L05503

    Article  Google Scholar 

  • Naidu A S, Cooper L W, Finney B P, et al. 2000. Organic carbon isotope ratios (δ13C) of Arctic Amerasian continental shelf sediments. International Journal of Earth Sciences, 89(3): 522–532, doi: https://doi.org/10.1007/s005310000121

    Article  Google Scholar 

  • Needoba J A, Waser N A, Harrison P J, et al. 2003. Nitrogen isotope fractionation in 12 species of marine phytoplankton during growth on nitrate. Marine Ecology Progress Series, 255: 81–91, doi: https://doi.org/10.3354/meps255081

    Article  Google Scholar 

  • Nitishinsky M, Anderson L G, Hölemann J A. 2007. Inorganic carbon and nutrient fluxes on the Arctic Shelf. Continental Shelf Research, 27(10–11): 1584–1599

    Article  Google Scholar 

  • Östlund H G, Hut G. 1984. Arctic Ocean water mass balance from isotope data. Journal of Geophysical Research, 89: 6373–6381, doi: https://doi.org/10.1029/JC089iC04p06373

    Article  Google Scholar 

  • Oxtoby L E, Mathis J T, Juranek L W, et al. 2016. Estimating stable carbon isotope values of microphytobenthos in the Arctic for application to food web studies. Polar Biology, 39(3): 473–483, doi: https://doi.org/10.1007/s00300-015-1800-2

    Article  Google Scholar 

  • Pesant S, Legendre L, Gosselin M, et al. 1996. Size-differential regimes of phytoplankton production in the Northeast Water Polynya (77°-81°N). Marine Ecology Progress Series, 142: 75–86, doi: https://doi.org/10.3354/meps142075

    Article  Google Scholar 

  • Pickart R S, Pratt L J, Torres D J, et al. 2010. Evolution and dynamics of the flow through Herald Canyon in the western Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 57(1–2): 5–26

    Article  Google Scholar 

  • Pineault S, Tremblay J É, Gosselin M, et al. 2013. The isotopic signature of particulate organic C and N in bottom ice: Key influencing factors and applications for tracing the fate of ice-algae in the Arctic Ocean. Journal of Geophysical Research: Oceans, 118(1): 287–300, doi: https://doi.org/10.1029/2012JC008331

    Google Scholar 

  • Qi Di, Chen Liqi, Chen Baoshan, et al. 2017. Increase in acidifying water in the western Arctic Ocean. Nature Climate Change, 7(3): 195–199, doi: https://doi.org/10.1038/nclimate3228

    Article  Google Scholar 

  • Rawlins M A, Steele M, Holland M M, et al. 2010. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations. Journal of Climate, 23(21): 5715–5737, doi: https://doi.org/10.1175/2010JCLI3421.1

    Article  Google Scholar 

  • Redfield A C. 1958. The biological control of chemical factors in the environment. American Scientist, 46: 205–221

    Google Scholar 

  • Semiletov I, Dudarev O, Luchin V, et al. 2005. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophysical Research Letters, 32(10): L10614, doi: https://doi.org/10.1029/2005GL022490

    Article  Google Scholar 

  • Semiletov I, Pipko I, Gustafsson Ö, et al. 2016. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nature Geoscience, 9(5): 361–365, doi: https://doi.org/10.1038/ngeo2695

    Article  Google Scholar 

  • Skrzypek G, Ford D. 2014. Stable isotope analysis of saline water samples on a cavity ring-down spectroscopy instrument. Environmental Science and Technology, 48(5): 2827–2834, doi: https://doi.org/10.1021/es4049412

    Article  Google Scholar 

  • Stringer W J, Groves J E. 1991. Location and areal extent of polynyas in the Bering and Chukchi Seas. Arctic, 44(S1): 164–171

    Google Scholar 

  • Tagliabue A, Bopp L. 2008. Towards understanding global variability in ocean carbon-13. Global Biogeochemical Cycles, 22(1): GB1025

    Article  Google Scholar 

  • Taguchi S. 1976. Relationship between photosynthesis and cell size of marine diatoms. Journal of Phycology, 12(2): 185–189

    Google Scholar 

  • Takahashi T, Broecker W S, Langer S. 1985. Redfield ratio based on chemical data from isopycnal surfaces. Journal of Geophysical Research: Oceans, 90(C4): 6907–6924, doi: https://doi.org/10.1029/JC090iC04p06907

    Article  Google Scholar 

  • Talley L D, Pickard G L, Emery W J, et al. 2011. Descriptive Physical Oceanography: An Introduction. 6th ed. Boston: Elsevier, 1–560

    Google Scholar 

  • Tank S E, Raymond P A, Striegl R G, et al. 2012. A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biochemical Cycles, 26(4): GB4018

    Google Scholar 

  • Tremblay J E, Gratton Y, Fauchot J, et al. 2002. Climatic and oceanic forcing of new, net, and diatom production in the North Water. Deep Sea Research Part II: Topical Studies in Oceanography, 49(22–23): 4927–4946

    Article  Google Scholar 

  • Tremblay J É, Michel C, Hobson K A, et al. 2006. Bloom dynamics in early opening waters of the Arctic Ocean. Limnology and Oceanography, 51(2): 900–912, doi: https://doi.org/10.4319/lo.2006.51.2.0900

    Article  Google Scholar 

  • Vonk J E, Sánchez-García L, Semiletov I, et al. 2010. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea. Biogeosciences, 7(10): 3153–3166, doi: https://doi.org/10.5194/bg-7-3153-2010

    Article  Google Scholar 

  • Vrede K, Heldal M, Norland S, et al. 2002. Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Applied and Environmental Microbiology, 68(6): 2965–2971, doi: https://doi.org/10.1128/AEM.68.6.2965-2971.2002

    Article  Google Scholar 

  • Weingartner T, Aagaard K, Woodgate R, et al. 2005. Circulation on the north central Chukchi Sea shelf. Deep Sea Research Part II: Topical Studies in Oceanography, 52(24–26): 3150–3174

    Article  Google Scholar 

  • Woodgate R A, Aagaard K, Weingartner T J. 2005. A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990–1991. Deep Sea Research Part II: Topical Studies in Oceanography, 52(24–26): 3116–3149

    Article  Google Scholar 

  • Yun M S, Chung K H, Zimmermann S, et al. 2012. Phytoplankton productivity and its response to higher light levels in the Canada Basin. Polar Biology, 35(2): 257–268, doi: https://doi.org/10.1007/s00300-011-1070-6

    Article  Google Scholar 

  • Yun M S, Kim B K, Joo H T, et al. 2015. Regional productivity of phytoplankton in the western Arctic Ocean during summer in 2010. Deep Sea Research Part II: Topical Studies in Oceanography, 120: 61–71, doi: https://doi.org/10.1016/j.dsr2.2014.11.023

    Article  Google Scholar 

  • Zhang Run, Chen Min, Guo Laodong, et al. 2012. Variations in the isotopic composition of particulate organic carbon and their relation with carbon dynamics in the western Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 81(81–84): 72–78

    Article  Google Scholar 

  • Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. 2016. Pacific inflow control on phytoplankton community in the Eastern Chukchi Shelf during summer. Continental Shelf Research, 129: 23–32, doi: https://doi.org/10.1016/j.csr.2016.09.010

    Article  Google Scholar 

Download references

Acknowledgements

We thank Xiaoyu Wang for generously providing temperature, salinity and Chl a data in the LV-77 Cruise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chen.

Additional information

Foundation item

The National Natural Science Foundation of China under contract No. 41721005; the China Ocean Mineral Resources R&D Association (COMRA) Program under contract No. DY135-E2-2-03; the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology under contract No. 2018SDKJ0104-3; the Ministry of Science and Education of Russia Project under contract No. AAAA-A17-117030110033-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, R., Mu, X., Chen, M. et al. Sources of particulate organic matter in the Chukchi and Siberian shelves: clues from carbon and nitrogen isotopes. Acta Oceanol. Sin. 39, 96–108 (2020). https://doi.org/10.1007/s13131-020-1650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-020-1650-9

Key words

Navigation