Skip to main content
Log in

Palladium(II) complexes assembled on solid materials: as catalysts for the –NO2 (nitro) to –NH2 (amine) reactions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Herein, a new series of [PdCl2(L)2] complexes where ligands are monodentate amine ligands bearing sulfonamide groups were synthesized, characterized using various techniques such as NMR, FT-IR, UV–Vis, and sc-XRD and investigated for their catalytic performance for the reduction of nitroarenes (2-nitroaniline, 4-nitroaniline, and nitrobenzene) in the presence of NaBH4 in water under heterogeneous conditions. Because the results show that the synthesized complexes are very efficient catalysts, materials using the selected palladium(II) complex supported by multiwall carbon nanotubes, silicon dioxide, and iron(II,III) oxide (Fe3O4) were fabricated by a simple-impregnation methodology, characterized by FT-IR, BET, TEM, and XRD techniques and investigated for their catalytic performance for the same reaction. Thus, a series of supported catalysts was designed with the aim of both enhancing catalytic activity and reducing noble-metal contents. Our findings serve to develop simple catalytic systems and this system can be easily used for catalytic reduction reactions which are the cornerstone of the production of important chemicals.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dell'Anna MM, Intini S, Romanazzi G, Rizzuti A, Leonelli C, Piccinni F, Mastrorilli P (2014) J Mol Catal A Chem 395:307

    CAS  Google Scholar 

  2. Hu XW, Long Y, Fan MY, Yuan M, Zhao H, Ma JT, Dong ZP (2019) Appl Catal B Environ 244:25

    CAS  Google Scholar 

  3. Shokouhimehr M, Kim T, Jun SW, Shin K, Jang Y, Kim BH, Kim J, Hyeon T (2014) Appl Catal A Gen 476:133

    CAS  Google Scholar 

  4. Das P, Ghosh S, Baskey M (2019) J Mater Sci Mater Electron 30:19731

    CAS  Google Scholar 

  5. Qu YM, Chen T (2020) Chem Eng J 382:122911

    CAS  Google Scholar 

  6. Liu Q, Tadrent S, Proust C, Gomez F, Khelfa A, Luart D, Len C (2020) Chem Eng Sci 211:115275

    CAS  Google Scholar 

  7. Du JT, Shi J, Sun Q, Wang D, Wu H, Wang JX, Chen JF (2020) Chem Eng J 382:122883

    CAS  Google Scholar 

  8. Marais E, Nyokong T (2008) J Hazard Mater 152:293

    CAS  PubMed  Google Scholar 

  9. Modirshahla N, Behnajady MA, Mohammadi-Aghdam S (2008) J Hazard Mater 154:778

    CAS  PubMed  Google Scholar 

  10. Canizares P, Saez C, Lobato J, Rodrigo MA (2004) Ind Eng Chem Res 43:1944

    CAS  Google Scholar 

  11. Chiou JR, Lai BH, Hsu KC, Chen DH (2013) J Hazard Mater 248:394

    PubMed  Google Scholar 

  12. Khan F, Pandey J, Vikram S, Pal D, Cameotra SS (2013) J Hazard Mater 254:72

    PubMed  Google Scholar 

  13. Jayabal S, Ramaraj R (2014) Appl Catal A Gen 470:369

    CAS  Google Scholar 

  14. Baran T (2019) J Mol Struct 1182:213

    CAS  Google Scholar 

  15. Liu ZY, Wang XG, Zou XJ, Lu XG (2018) ChemistrySelect 3:5165

    Google Scholar 

  16. Jia WG, Ling S, Zhang HN, Sheng EH, Lee R (2018) Organometallics 37:40

    CAS  Google Scholar 

  17. Cui XL, Zhou X, Dong ZP (2018) Catal Commun 107:57

    CAS  Google Scholar 

  18. Oh SG, Mishra V, Cho JK, Kim BJ, Kim HS, Suh YW, Lee H, Park HS, Kim YJ (2014) Catal Commun 43:79

    CAS  Google Scholar 

  19. Schabel T, Belger C, Plietker B (2013) Org Lett 15:2858

    CAS  PubMed  Google Scholar 

  20. Fan GY, Huang WJ, Wang CY (2013) Nanoscale 5:6819

    CAS  PubMed  Google Scholar 

  21. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Alizadeh M, Bagherzadeh M (2016) J Colloid Interf Sci 466:360

    CAS  Google Scholar 

  22. Naseem K, Begum R, Farooqi ZH (2017) Environ Sci Pollut Res 24:6446

    CAS  Google Scholar 

  23. Dong BQ, Li YH, Ning XM, Wang HJ, Yu H, Peng F (2017) Appl Catal A Gen 545:54

    CAS  Google Scholar 

  24. Jiang T, Du SC, Jafari T, Zhong W, Sun Y, Song WQ, Luo Z, Hines WA, Suib SL (2015) Appl Catal A Gen 502:105

    CAS  Google Scholar 

  25. El-Hout SI, El-Sheikh SM, Hassan HMA, Harraz FA, Ibrahim IA, El-Sharkawy EA (2015) Appl Catal A Gen 503:176

    CAS  Google Scholar 

  26. Dayan S, Altinkaynak C, Kayaci N, Dogan SD, Özdemir N, Ozpozan NK (2020) Appl Organomet Chem 34:e5381

    CAS  Google Scholar 

  27. Dayan S, Kayaci N, Dayan O, Ozdemir N, Ozpozan NK (2020) Polyhedron 175:114181

    Google Scholar 

  28. Dongil AB, Pastor-Perez L, Fierro JLG, Escalona N, Sepulveda-Escribano A (2016) Appl Catal A Gen 513:89

    CAS  Google Scholar 

  29. Areephong J, Huo B, Mbaezue II, Ylijoki KEO (2016) Tetrahedron Lett 57:3124

    CAS  Google Scholar 

  30. Khan RI, Pitchumani K (2016) Green Chem 18:5518

    CAS  Google Scholar 

  31. Ji R, Zhai SR, Zheng W, Xiao ZY, An QD, Zhang F (2016) RSC Adv 6:70424

    CAS  Google Scholar 

  32. Dayan S, Kalaycioglu NO (2013) Appl Organomet Chem 27:52

    CAS  Google Scholar 

  33. McCue AJ, Guerrero-Ruiz A, Rodriguez-Ramos I, Anderson JA (2016) J Catal 340:10

    CAS  Google Scholar 

  34. Dahm G, Bailly C, Karmazin L, Bellemin-Laponnaz S (2015) J Organomet Chem 794:115

    CAS  Google Scholar 

  35. Marquise N, Chevallier F, Nassar E, Frederich M, Ledoux A, Halauko YS, Ivashkevich OA, Matulis VE, Roisnel T, Dorcet V, Mongin F (2016) Tetrahedron 72:825

    CAS  Google Scholar 

  36. Rezaei B, Shams-Ghahfarokhi L, Havakeshian E, Ensafi AA (2016) Talanta 158:42

    CAS  PubMed  Google Scholar 

  37. Dayan S, Ozdemir N, Ozpozan NK (2019) Appl Organomet Chem 33:e4710

    Google Scholar 

  38. Charbonneau M, Addoumieh G, Oguadinma P, Schmitzer AR (2014) Organometallics 33:6544

    CAS  Google Scholar 

  39. Dang TT, Zhu YH, Ngiam JSY, Ghosh SC, Chen AQ, Seayad AM (2013) ACS Catal 3:1406

    CAS  Google Scholar 

  40. Kim SW, Kim M, Lee WY, Hyeon T (2002) J Am Chem Soc 124:7642

    CAS  PubMed  Google Scholar 

  41. Zeng MF, Wang YD, Liu Q, Yuan X, Feng RK, Yang Z, Qi CZ (2016) Int J Biol Macromol 89:449

    CAS  PubMed  Google Scholar 

  42. Choi J, Chan S, Yip G, Joo H, Yang H, Ko FK (2016) Water Res 101:46

    CAS  PubMed  Google Scholar 

  43. Pahlevanneshan Z, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoore-Baltork I, Loghmani-Khouzani H (2016) J Organomet Chem 809:31

    CAS  Google Scholar 

  44. Morisse CGA, McInroy AR, Anderson C, Mitchell CJ, Parker SF, Lennon D (2017) Catal Today 283:110

    CAS  Google Scholar 

  45. Yadav D, Awasthi SK (2020) New J Chem 44:1320

    CAS  Google Scholar 

  46. Subodh, Mogha NK, Chaudhary K, Kumar G, Masram DT (2018) ACS Omega 3 :16377

  47. Subodh, Chaudhary K, Prakash K, Masram DT (2020) Appl Surf Sci 509:144902

  48. Dayan S, Kayaci N, Ozpozan NK, Dayan O (2017) Appl Organomet Chem 31:e3699

    Google Scholar 

  49. Kayaci N, Dayan S, Ozdemir N, Dayan O, Ozpozan NK (2018) Appl Organomet Chem 32:e4558

    Google Scholar 

  50. Gunnaz S, Ozdemir N, Dayan S, Dayan O, Cetinkaya B (2011) Organometallics 30:4165

    CAS  Google Scholar 

  51. Sheldrick GM (2015) Acta Crystallogr A 71:3

    Google Scholar 

  52. Sheldrick GM (2015) Acta Crystallogr C 71:3

    Google Scholar 

  53. Farrugia LJ (2012) J Appl Crystallogr 45:849

    CAS  Google Scholar 

  54. Vicente J, Saura-Llamas I, Garcia-Lopez JA (2010) Organometallics 29:4320

    CAS  Google Scholar 

  55. Accadbled F, Tinant B, Henon E, Carrez D, Croisy A, Bouquillon S (2010) Dalton Trans 39:8982

    CAS  PubMed  Google Scholar 

  56. Grazul M, Sigel R, Maake C, Besic-Gyenge E, Lorenz IP, Mayer P, Czyz M, Budzisz E (2014) Polyhedron 67:136

    CAS  Google Scholar 

  57. Sabater S, Mata JA, Peris E (2013) Organometallics 32:1112

    CAS  Google Scholar 

  58. Wu QX, Wu LL, Zhang L, Fu HY, Zheng XL, Chen H, Li RX (2014) Tetrahedron 70:3471

    CAS  Google Scholar 

  59. Tessier C, Rochon FD (2010) Inorg Chim Acta 363:2652

    CAS  Google Scholar 

  60. Heinrich F, Kessler MT, Dohmen S, Singh M, Prechtl MHG, Mathur S (2012) Eur J Inorg Chem 36:6027

    Google Scholar 

  61. Grirrane A, Garcia H, Corma A, Alvarez E (2012) Chem Eur J 18:14934

    CAS  PubMed  Google Scholar 

  62. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed 34:1555

    CAS  Google Scholar 

  63. Dayan S, Arslan F, Ozpozan NK (2015) Appl Catal B Environ 164:305

    CAS  Google Scholar 

  64. Dayan S, Ozturk S, Kayaci N, Ozpozan NK, Ozturk E (2015) B Mater Sci 38:1651

    CAS  Google Scholar 

  65. Kilic A, Gezer E, Durap F, Aydemir M, Baysal A (2019) J Organomet Chem 896:129

    CAS  Google Scholar 

  66. Zheng Y, He F, Wu JM, Ma DL, Fan HL, Zhu SF, Li X, Lu YZ, Liu Q, Hu X (2019) ACS Appl Nano Mater 2:3538

    CAS  Google Scholar 

  67. Zhang N, Cao LY, Feng LL, Huang JF, Kajiyoshi K, Li CY, Liu QQ, Yang D, He JJ (2019) Nanoscale 11:11542

    CAS  PubMed  Google Scholar 

  68. Yao YJ, Yu MJ, Yin HY, Wei FY, Zhang J, Hu HH, Wang SB (2019) Appl Surf Sci 489:44

    CAS  Google Scholar 

  69. Xu C, Wang J, Gao BR, Dou MM, Chen R (2019) J Mater Sci 54:8892

    CAS  Google Scholar 

  70. Tamakloe W, Agyeman DA, Park M, Yang J, Kang YM (2019) J Mater Chem A 7:7396

    CAS  Google Scholar 

  71. Abbas M, Torati SR, Kim C (2015) Nanoscale 7:12192

    CAS  PubMed  Google Scholar 

  72. Baghbamidi SE, Hassankhani A, Sanchooli E, Sadeghzadeh SM (2018) Appl Organomet Chem 32:e4251

    Google Scholar 

  73. Goyal A, Bansal S, Singhal S (2014) Int J Hydrogen Energy 39:4895

    CAS  Google Scholar 

  74. Begum R, Naseem K, Ahmed E, Sharif A, Farooqi ZH (2016) Colloid Surf A 511:17

    CAS  Google Scholar 

  75. Huang HG, Tang MW, Wang XG, Zhang M, Guo SQ, Zou XJ, Lu XG (2018) ACS Appl Mater Inter 10:5413

    CAS  Google Scholar 

  76. Mahata N, Cunha AF, Orfao JJM, Figueiredo JL (2008) Appl Catal A Gen 351:204

    CAS  Google Scholar 

  77. Dayan S, Arslan F, Kayaci N, Kalaycioglu NO (2014) Spectrochim Acta A 120:167

    CAS  Google Scholar 

  78. Dayan S, Kalaycioglu NO, Dayan O, Ozdemir N, Dincer M, Buyukgungor O (2013) Dalton Trans 42:4957

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Dayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayan, S., Kayacı, N., Özdemir, N. et al. Palladium(II) complexes assembled on solid materials: as catalysts for the –NO2 (nitro) to –NH2 (amine) reactions. Monatsh Chem 151, 1533–1548 (2020). https://doi.org/10.1007/s00706-020-02679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02679-2

Keywords

Navigation