Skip to main content
Log in

Influence of the Substitution of Chromium for Manganese on the Structure and Hydrogen-Sorption Properties of Ti47.5Zr30Mn22.5 Eutectic Alloy

  • Published:
Materials Science Aims and scope

We study the influence of alloying with chromium on the structure and phase composition of the Ti47.5Zr30Mn22.5 eutectic alloy and its hydrogen sorption-desorption. It is shown that the addition of chromium to the alloy changes the type of crystal lattice of the Laves phase from the C14 hexagonal phase to the C15 cubic, which does not affect the hydrogen-sorption properties. It is demonstrated that hydrides obtained on the basis of the C14 and C15 Laves phases have different thermal stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Ivanchenko, T. Pryadko, V. Dekhtyarenko, and T. Kosorukova, “Hydrogen absorbing properties of a Ti–Zr–Mn eutectic alloy,” Chem. Metal. Alloys, 1, No. 2, 133–136 (2008).

    Article  Google Scholar 

  2. V. G. Ivanchenko, V. A. Dekhtyarenko, and T. V. Pryadko, “Sorption properties of β (Ti, Zr, Mn) + (Ti, Zr)Mn2–x heterophase alloys,” Metall. Noveish. Tekhnol., 33, No. 11, 479–484 (2011).

    Google Scholar 

  3. H. Oesterreicher and H. Bittner, “Studies of hydride formation in Ti1–xZrxMn2,” Mat. Res. Bull., 13, 83–88 (1978).

    Article  CAS  Google Scholar 

  4. T. Huang, Z. Wu, X. Yu, J. Chen, B. Xia, T. Huang, and N. Xu, “Hydrogen absorption-desorption behavior of zirconium-substituting Ti–Mn based hydrogen storage alloys,” Intermetallics, 12, No. 1, 91–96 (2004).

  5. Y. Morita, T. Gamo, and S. Kuranaka, “Effects of nonmetal addition on hydriding properties for Ti–Mn Laves phase alloys,” J. Alloys Comp., 253–254, 29–33 (1997).

    Article  Google Scholar 

  6. X. Yu, B. Xia, Z. Wu, and N. Xu, “Phase structure and hydrogen sorption performance of Ti–Mn-based alloys,” Mat. Sci. Eng. A, 373, Nos. 1–2, 303–308 (2004).

  7. M. Kazemipour, H. Salimijazi, A. Saidi, A. Saatchi, and A. Arefarjmand,, “Hydrogen storage properties of Ti0.72Zr0.28Mn1.6V0.4 alloy prepared by mechanical alloying and copper boat induction melting,” Int. J. Hydrogen Energy, 39, No. 24, 12784–12788 (2014).

    Article  CAS  Google Scholar 

  8. Y. Zhang, J. Li, T. Zhang, T. Wu, H. Kou, X. Xue, “Hydrogenation thermokinetics and activation behavior of nonstoichiometric Zr-based Laves alloys with enhanced hydrogen storage capacity,” J. Alloys Comp., 694, 300–308 (2017).

    Article  CAS  Google Scholar 

  9. K. Young, T. Ouchi, J. Nei, and L. Wang, “Annealing effects on Laves phase-related body-centered-cubic solid solution metal hydride alloys,” J. Alloys Comp., 654, 216–225 (2016).

    Article  CAS  Google Scholar 

  10. X. B. Yu, Z. Wu, B. J. Xia, and N. X. Xu, “Enhancement of hydrogen storage capacity of Ti–V–Cr–Mn BCC phase alloys,” J. Alloys Comp., 372, Nos. 1–2, 272–277 (2004).

  11. M. Yoshida and E. Akiba, “Hydrogen absorbing-desorbing properties and crystal structure of the Zr–Ti–Ni–Mn–V AB2 Laves phase alloys,” J. Alloys Comp., 224, No. 1, 121–126 (1995).

    Article  CAS  Google Scholar 

  12. M. J. Choi, H. S. Hong, and K. S. Lee, “Electrochemical characteristics of the composite metal hydride of TiFe and TiMn2 synthesized by mechanical alloying,” J. Alloys Comp., 358, Nos. 1–2, 306–311 (2003).

  13. L. Pontonnier, S. Miraglia, D. Fruchart, J. L. Soubeyroux, and P. Boyer, “Structural study of hyperstoichiometric alloys ZrMn2+x and their hydrides,” J. Alloys Comp., 186, 241–248 (1992).

    Article  CAS  Google Scholar 

  14. H. W. Mayer, K. M. Alasafi, and O. Bernauer, “Strukturuntersuchungen an TiMe1.87 und TiMe1.87D2.36 (Me ≡ V0.40Mn0.60) mittels Neutronenbeugung,” J. Less-Comm. Metals, 88, No. 2, 7–10 (1982).

    Article  Google Scholar 

  15. V. G. Ivanchenko, V. A. Dekhtyarenko, and T. V. Pryadko, “Hydrogen-sorption properties of an alloy based on the (Ti, Zr)Mn2–x intermetallic compound,” Poroshk. Metallurg., Nos. 5/6, 129–134 (2013).

  16. T. V. Pryadko, “Specific features of the hydrogenation of alloys of the Ti–V system,” Metall. Noveish. Tekhnol., 37, No. 2, 243–245 (2015).

    Article  CAS  Google Scholar 

  17. E. A. Anikina and V. N. Verbetsky, “Calorimetric investigation of the hydrogen interaction with Ti0.9Zr0.1Mn1.2V0.1,” Int. J. Hydrogen Energy, 36, No. 1, 1344–1348 (2011).

    Article  CAS  Google Scholar 

  18. Y. Shudo, T. Ebisawa, and H. Itoh, “Characterization of Ti–Zr–Mn–V-based Laves phase alloys for MH refrigeration system,” J. Alloys Comp., 356–357, 497–500 (2003).

    Article  Google Scholar 

  19. V. A. Dekhtyarenko, “Structure and hydrogen-sorption properties of (Ti0.34Zr0.66)Mn1.1V0.1 alloy,” Metallofiz. Noveish. Tekhnol., 37, No. 5, 683–685 (2015).

    Article  CAS  Google Scholar 

  20. K. Young, T. Ouchi, J. Nei, and T. Meng, “Effects of Cr, Zr, V, Mn, Fe, and Co to the hydride properties of Laves phase-related body-centered-cubic solid solution alloys,” J. Power Sources, 281, 164–172 (2015).

    Article  CAS  Google Scholar 

  21. X. B. Yu, J. Z. Chen, Z. Wu, B. J. Xia, and N. X. Xu, “Effect of Cr content on hydrogen storage properties for Ti–V-based BCC-phase alloys,” Int. J. Hydrogen Energy, 29, No. 13, 1377–1381 (2004).

    Article  CAS  Google Scholar 

  22. R.-R. Jeng, C.-Y. Chou, S.-L. Lee, Y.-C. Wu, and H.-Y. Bor, “Effect of Mn, Ti/Cr ratio, and heat treatment on hydrogen storage properties of Ti–V–Cr–Mn alloys,” J. Chin. Inst. Eng., 34, No. 5, 601–608 (2011).

    Article  CAS  Google Scholar 

  23. G. F. Kobzenko and A,. A. Shkola, “Reactor unit for the investigation of the physicochemical processes of gas saturation,” Zavod. Lab., No. 7, 41–45 (1990).

  24. N. P. Lyakishev (editor), Diagrams of States for Binary Metallic Systems. A Handbook [in Russian], in 3 Vols., Mashinostroenie, Moscow (2001).

  25. A. V. Manuilov and V. I. Rodionov, Foundations of Chemistry [in Russian], Tsentrpoligraf, Moscow (2014).

  26. S. V. Mitrokhin, “Regularities of hydrogen interaction with multicomponent Ti(Zr)–Mn–V Laves phase alloys,” J. Alloys Comp., 404–406, 384–387 (2005).

    Article  Google Scholar 

  27. T. V. Pryadko and V. A. Dekhtyarenko, “Influence of partial substitution of chromium for manganese on the structure and kinetics of hydrogenation of an alloy based on the (Ti, Zr)(V, Mn)2–x intermetallic compound,” Metallofiz. Noveish. Tekhnol., 40, No. 5, 649–660 (2018).

    Article  CAS  Google Scholar 

  28. K. N. Young and J. Nei, “The current status of hydrogen storage alloy development for electrochemical applications,” Materials (Basel), 6, No. 10, 4574–4608 (2013).

  29. T. P. Yadav, R. R. Shahi, and O. N. Srivastava, “Synthesis, characterization, and hydrogen storage behavior of AB2 (ZrFe2, Zr(Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 type materials,” Int. J. Hydrogen Energy, 37, No. 4, 3689–3696 (2012).

  30. F. Stein, M. Palm, and G. Sauthoff, “Structure and stability of Laves phases: P. I. Critical assessment of factors controlling Laves phase stability,” Intermetallics, 12, Nos. 7–9, Spec. Issue, 713–720 (2004).

  31. D. J. Thoma and J. H. Perepezko, “A geometric analysis of solubility ranges in Laves phases,” J. Alloys Comp., 224, No. 2, 330–341 (1995).

    Article  CAS  Google Scholar 

  32. V. N. Verbetsky and S. V. Mitrokhin, “Properties of metal hydrides and prospects of their application,” Materialovedenie, No. 1, 48–59 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dekhtyarenko.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 55, No. 6, pp. 70–77, November–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pryadko, T.V., Dekhtyarenko, V.A., Khranovs’ka, K.M. et al. Influence of the Substitution of Chromium for Manganese on the Structure and Hydrogen-Sorption Properties of Ti47.5Zr30Mn22.5 Eutectic Alloy. Mater Sci 55, 854–862 (2020). https://doi.org/10.1007/s11003-020-00379-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-020-00379-0

Keywords

Navigation