Skip to main content
Log in

Application of nanoindentation technology in rocks: a review

  • Review
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

Nanoindentation has become an increasingly popular method to determine the mechanical properties of both homogeneous and heterogeneous materials. Rocks are inherently heterogeneous and understanding their mechanical properties is of vital importance for relevant engineering applications. Due to its high precision and resolution in both force and displacement, nanoindentation can be utilized to extract the localized mechanical properties of individual grains. This review paper presents an overview of applications of nanoindentation techniques in various rocks, such as shale, coal, limestone, marble, sandstone and claystone. Apart from the conventional mechanical parameters, i.e., Young’s modulus and hardness, other parameters, such as fracture toughness, time-dependent creep and tensile strength can also be obtained using nanoindentation methods. Basic equations and parameters employed to obtain the above mechanical parameters are clearly explained. In addition, merits and demerits of previous nanoindentation studies are summarised and roadmap for future trends of nanoindentation in geomaterials are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(adapted from Harding et al. 1994)

Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedi S, Slim M, Hofmann R, Bryndzia T, Ulm F-J (2016a) Nanochemo-mechanical signature of organic-rich shales: a coupled indentation–EDX analysis. Acta Geotech 11(3):559–572

    Article  Google Scholar 

  • Abedi S, Slim M, Ulm F-J (2016b) Nanomechanics of organic-rich shales: the role of thermal maturity and organic matter content on texture. Acta Geotech 11(4):775–787

    Article  Google Scholar 

  • Abousleiman Y, Tran M, Hoang S, Ortega JA, Ulm F-J (2010) Geomechanics field characterization of Woodford Shale and Barnett Shale with advanced logging tools and nano-indentation on drill cuttings. Lead Edge 29(6):730–736

    Article  Google Scholar 

  • Abousleiman Y, Hull K, Han Y, Al-Muntasheri G, Hosemann P, Parker S, Howard C (2016) The granular and polymer composite nature of kerogen-rich shale. Acta Geotech 11(3):573–594

    Article  Google Scholar 

  • Ahmadov R, Vanorio T, Mavko G (2009) Confocal laser scanning and atomic-force microscopy in estimation of elastic properties of the organic-rich Bazhenov Formation. Lead Edge 28(1):18–23

    Article  Google Scholar 

  • Akono A-T, Kabir P (2016) Nano-scale characterization of organic-rich shale via indentation methods. In: Jin C, Cusatis G (eds) New frontiers in oil and gas exploration. Springer, Cham, pp 209–233

    Chapter  Google Scholar 

  • Akono A-T, Kabir P, Shi Z, Fuchs S, Tsotsis TT, Jessen K, Werth CJ (2019) Modeling CO2-induced alterations in Mt. Simon Sandstone via nanomechanics. Rock Mech Rock Eng 52(5):1353–1375

    Article  Google Scholar 

  • Akrad OM, Miskimins JL, Prasad M (2011) The effects of fracturing fluids on shale rock mechanical properties and proppant embedment. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  • Alcalá J, Esque-De Los Ojos D, Rodríguez S (2009) The role of crystalline anisotropy in mechanical property extractions through Berkovich indentation. J Mater Res 24(3):1235–1244

    Article  Google Scholar 

  • Alkorta J, Martínez-Esnaola JM, Sevillano JG (2008) Critical examination of strain-rate sensitivity measurement by nanoindentation methods: application to severely deformed niobium. Acta Mater 56(4):884–893

    Article  Google Scholar 

  • Alsinan S (2017) Effect of artificially induced maturation on the elastic properties of kerogen. SEG technical program expanded abstracts 2017, Society of exploration geophysicists, pp 3647–3652

  • Alstadt KN, Katti KS, Katti DR (2016) Nanoscale morphology of kerogen and in situ nanomechanical properties of green river oil shale. J Nanomech Micromech 6(1):04015003

    Article  Google Scholar 

  • Ante M, Lingareddy M, Aminzadeh F, Jha B (2018) Nano-and micro-scale deformation behavior of sandstone and shale. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Arnold G, Auvray C, Giraud A, Armand G (2015) Claystone phases mechanical properties identified from temperature and humidity controlled nanoindentation measurements. In: 13th ISRM international congress of rock mechanics. International Society for Rock Mechanics and Rock Engineering

  • Ashraf W, Olek J, Tian N (2015) Nanomechanical characterization of the carbonated wollastonite system. In: Sobolev K, Shah SP (eds) Nanotechnology in construction. Springer, Cham, pp 71–77

    Chapter  Google Scholar 

  • Ast J, Ghidelli M, Durst K, Goeken M, Sebastiani M, Korsunsky A (2019) A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater Des 173:107762

    Article  Google Scholar 

  • Auvray C, Giot R, Grgic D (2013a) Nano-indentation partially saturated argillite: experience device and measurements. In: Proceedings of EUROCK

  • Auvray C, Giot R, Grgic D (2013b) Nano-indentation tests on partially satured argillite: experimental device and measurements. In: Kwasniewski M, Lydzba D (eds) RapidMiner: data mining use cases and business analytics applications, Cambridge, p 201

  • Auvray C, Arnold G, Armand G (2015) Experimental study of elastic properties of different constituents of partially saturated argillite using nano-indentation tests. Eng Geol 191:61–70

    Article  Google Scholar 

  • Auvray C, Lafrance N, Bartier D (2017) Elastic modulus of claystone evaluated by nano-/micro-indentation tests and meso-compression tests. J Rock Mech Geotech Eng 9(1):84–91

    Article  Google Scholar 

  • Ban H, Karki P, Kim Y-R (2014) Nanoindentation test integrated with numerical simulation to characterize mechanical properties of rock materials. J Test Eval 42(3):787–796

    Article  Google Scholar 

  • Bandini A, Berry P, Bemporad E, Sebastiani M (2012) Effects of intra-crystalline microcracks on the mechanical behavior of a marble under indentation. Int J Rock Mech Min Sci 54:47–55

    Article  Google Scholar 

  • Bandini A, Berry P, Bemporad E, Sebastiani M, Chicot D (2014) Role of grain boundaries and micro-defects on the mechanical response of a crystalline rock at multiscale. Int J Rock Mech Min Sci 71:429–441

    Article  Google Scholar 

  • Bartier D, Auvray C (2017) Determination of elastic modulus of claystone: nano-/micro-indentation and meso-compression tests used to investigate impact of alkaline fluid propagation over 18 years. J Rock Mech Geotech Eng 9(3):511–518

    Article  Google Scholar 

  • Bastos de Paula O (2011) Elastic properties of carbonates: measurements and modelling. Department of Exploration Geophysics, Curtin University, Bentley, p 149

    Google Scholar 

  • Basu S, Moseson A, Barsoum MW (2006) On the determination of spherical nanoindentation stress–strain curves. J Mater Res 21(10):2628–2637

    Article  Google Scholar 

  • Basu S, Zhou A, Barsoum M (2009) On spherical nanoindentations, kinking nonlinear elasticity of mica single crystals and their geological implications. J Struct Geol 31(8):791–801

    Article  Google Scholar 

  • Beake BD, Harris AJ, Liskiewicz TW (2016) Advanced nanomechanical test techniques. In: Ranganathan NM (ed) Materials characterization: modern methods and applications. CRC Press, Boca Raton, pp 17–18

    Google Scholar 

  • Beirau T, Nix WD, Ewing RC, Schneider GA, Groat LA, Bismayer U (2016) Mechanical properties of natural radiation-damaged titanite and temperature-induced structural reorganization: a nanoindentation and Raman spectroscopic study. Am Miner 101(2):371–384

    Article  Google Scholar 

  • Bennett KC, Berla LA, Nix WD, Borja RI (2015) Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotech 10(1):1–14

    Article  Google Scholar 

  • Berthonneau J, Hoover CG, Grauby O, Baronnet A, Pellenq RJ-M, Ulm F-J (2017) Crystal-chemistry control of the mechanical properties of 2: 1 clay minerals. Appl Clay Sci 143:387–398

    Article  Google Scholar 

  • Bhushan B (2017) Depth-sensing nanoindentation measurement techniques and applications. Microsyst Technol 23(5):1595–1649

    Article  Google Scholar 

  • Bobko C (2006) Material invariant properties and reconstruction of microstructure of sandstones by nanoindentation and microporoelastic analysis. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, p 189

    Google Scholar 

  • Bobko C (2008) Assessing the mechanical microstructure of shale by nanoindentation: the link between mineral composition and mechanical properties. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, p 351

    Google Scholar 

  • Bobko C, Ulm F-J (2008) The nano-mechanical morphology of shale. Mech Mater 40(4):318–337

    Article  Google Scholar 

  • Borodich FM, Bull S, Epshtein S (2015) Nanoindentation in studying mechanical properties of heterogeneous materials. J Min Sci 51(3):470–476

    Article  Google Scholar 

  • Boulenouar A, Mighani S, Pourpak H, Bernabé Y, Evans B (2017) Mechanical properties of Vaca Muerta shales from nano-indentation tests. In: 51st US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Bower A, Fleck NA, Needleman A, Ogbonna N (1993) Indentation of a power law creeping solid. Proc R Soc Lond Ser A Math Phys Sci 441(1911):97–124

    MATH  Google Scholar 

  • Brooks Z (2010) A nanomechanical investigation of the crack tip process zone of marble. Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Brooks Z, Ulm F-J, Einstein H, Abousleiman Y (2010) A nanomechanical investigation of the crack tip process zone. In: 44th US rock mechanics symposium and 5th US-Canada rock mechanics symposium. American Rock Mechanics Association, Salt Lake City, UT

  • Brooks Z, Ulm F-J, Einstein H (2012) Role of microstructure size in fracture process zone development of marble. In: 46th US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Brooks Z, Ulm F-J, Einstein H (2013) Environmental scanning electron microscopy (ESEM) and nanoindentation investigation of the crack tip process zone in marble. Acta Geotech 8(3):223–245

    Article  Google Scholar 

  • Broz ME, Cook RF, Whitney DL (2006) Microhardness, toughness, and modulus of Mohs scale minerals. Am Miner 91(1):135–142

    Article  Google Scholar 

  • Bruns S, Petho L, Minnert C, Michler J, Durst K (2020) Fracture toughness determination of fused silica by cube corner indentation cracking and pillar splitting. Mater Des 186:108311

    Article  Google Scholar 

  • Cała M, Cyran K, Kawa M, Kolano M, Łydżba D, Pachnicz M, Rajczakowska M, Różański A, Sobótka M, Stefaniuk D (2017) Identification of microstructural properties of shale by combined use of X-ray micro-CT and nanoindentation tests. Procedia Eng 191:735–743

    Article  Google Scholar 

  • Campbell AC, Buršíková V, Martinek J, Klapetek P (2019) Modeling the influence of roughness on nanoindentation data using finite element analysis. Int J Mech Sci 161:105015

    Article  Google Scholar 

  • Cheng Y-T, Cheng C-M (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Rep 44(4–5):91–149

    Article  Google Scholar 

  • Cheng Y-T, Li Z, Cheng C-M (2002) Scaling relationships for indentation measurements. Philos Mag A 82(10):1821–1829

    Article  Google Scholar 

  • Chinh NQ, Szommer P (2014) Mathematical description of indentation creep and its application for the determination of strain rate sensitivity. Mater Sci Eng, A 611:333–336

    Article  Google Scholar 

  • Choi I-C, Yoo B-G, Kim Y-J, Jang J-I (2012) Indentation creep revisited. J Mater Res 27(1):3–11

    Article  Google Scholar 

  • Cohen SR, Kalfon-Cohen E (2013) Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review. Beilstein J Nanotechnol 4(1):815–833

    Article  Google Scholar 

  • Constantinides G, Ulm F-J, Van Vliet K (2003) On the use of nanoindentation for cementitious materials. Mater Struct 36(3):191–196

    Article  Google Scholar 

  • Constantinides G, Ravi Chandran KS, Ulm FJ, Van Vliet KJ (2006) Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng, A 430(1):189–202

    Article  Google Scholar 

  • Corapcioglu H, Miskimins J, Prasad M (2014) Fracturing fluid effects on Young’s modulus and embedment in the niobrara formation. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers, Amsterdam, The Netherlands, p 17

  • Cui Y-Y, Jia Y-F, Xuan F-Z (2018) Micro-deformation evolutions of the constituent phases in duplex stainless steel during cyclic nanoindentation. Sci Rep 8(1):6199

    Article  Google Scholar 

  • Daphalapurkar N, Wang F, Fu B, Lu H, Komanduri R (2011) Determination of mechanical properties of sand grains by nanoindentation. Exp Mech 51(5):719–728

    Article  Google Scholar 

  • Deirieh A, Ortega JA, Ulm FJ, Abousleiman Y (2012) Nanochemomechanical assessment of shale: a coupled WDS-indentation analysis. Acta Geotech 7(4):271–295

    Article  Google Scholar 

  • Deng P (2017) Measurement of mineral elastic modulus through nanoindentation. Auburn University, Auburn

    Google Scholar 

  • Donnelly E, Baker SP, Boskey AL, van der Meulen MC (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res, Part A 77(2):426–435

    Article  Google Scholar 

  • Du H, Radonjic M (2018) Comparison of micro/nano-indentation results for Pottsville and Marcellus Shale. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Du J, Hu L, Meegoda JN, Zhang G (2018) Shale softening: observations, phenomenological behavior, and mechanisms. Appl Clay Sci 161:290–300

    Article  Google Scholar 

  • Duan ZC, Hodge AM (2009) High-temperature nanoindentation: new developments and ongoing challenges. JOM 61(12):32

    Article  Google Scholar 

  • Dutta A, Penumadu D (2007) Hardness and modulus of individual sand particles using nanoindentation. In: Geo-denver 2007 congress: new peaks in geotechnics. pp 1–10

  • Eliyahu M, Emmanuel S, Day-Stirrat RJ, Macaulay CI (2015) Mechanical properties of organic matter in shales mapped at the nanometer scale. Mar Pet Geol 59:294–304

    Article  Google Scholar 

  • Epshtein SA, Borodich FM, Bull SJ (2015) Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation. Appl Phys A 119(1):325–335

    Article  Google Scholar 

  • Erdoğan S, Forster A, Stutzman P, Garboczi E (2017) Particle-based characterization of Ottawa sand: shape, size, mineralogy, and elastic moduli. Cement Concr Compos 83:36–44

    Article  Google Scholar 

  • Faisal N, Ahmed R, Reuben R (2011) Indentation testing and its acoustic emission response: applications and emerging trends. Int Mater Rev 56(2):98–142

    Article  Google Scholar 

  • Fan M, Jin Y, Chen M, Geng Z (2019) Mechanical characterization of shale through instrumented indentation test. J Pet Sci Eng 174:607–616

    Article  Google Scholar 

  • Fang L (2008) Development and applications of electrical instrumented indentation. Dissertation, The Pennsylvania State University

  • Feng Y, Zhang T (2015) Determination of fracture toughness of brittle materials by indentation. Acta Mech Solida Sin 28(3):221–234

    Article  Google Scholar 

  • Fischer-Cripps A (2011) Nanoindentation. Springer, New York

    Book  Google Scholar 

  • Fu H (2018) The application of nanoindentation technology with simulation on the micromechanical properties of bakken formation. Petroleum Engineering, University of North Dakota, Grand Forks, North Dakota

    Google Scholar 

  • Fu H, Hou X, Ge J, Pu H (2017) Nanoindentation studies on the mechanical properties of bakken formation. In: 51st US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Gan M, Tomar V (2011) Scale and temperature dependent creep modeling and experiments in materials. JOM 63(9):27

    Article  Google Scholar 

  • Ghidelli M, Sebastiani M, Johanns KE, Pharr GM (2017) Effects of indenter angle on micro-scale fracture toughness measurement by pillar splitting. J Am Ceram Soc 100(12):5731–5738

    Article  Google Scholar 

  • Ghorbal GB, Tricoteaux A, Thuault A, Louis G, Chicot D (2017) Mechanical characterization of brittle materials using instrumented indentation with Knoop indenter. Mech Mater 108:58–67

    Article  Google Scholar 

  • Goldsby DL, Rar A, Pharr GM, Tullis TE (2004) Nanoindentation creep of quartz, with implications for rate-and state-variable friction laws relevant to earthquake mechanics. J Mater Res 19(1):357–365

    Article  Google Scholar 

  • Golovin YI, Tyurin A, Victorov S, Kochanov A, Samodurov A, Pirozhkova T (2017) Physico-mechanical properties and micromechanisms of local deformation in thin near-surface layers of complex multiphase materials. Bull Russ Acad Sci Phys 81(3):360–364

    Article  Google Scholar 

  • Golovin Y, Tyurin A, Victorov S, Kochanov A, Pirozhkova T (2018) Size effects and charting the physical and mechanical properties of individual phases and interphases in polycrystalline materials. Bull Russ Acad Sci Phys 82(7):856–859

    Article  Google Scholar 

  • Goodall R, Clyne T (2006) A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater 54(20):5489–5499

    Article  Google Scholar 

  • Goral J, Deo M, Nadimi S, McLannan J, McCarter M, Mattson E, Huang H (2018) Micro-and macro-scale geomechanical testing of Woodford Shale. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Gupta I, Sondergeld CH, Rai CS, Hofmann R (2017) Water weakening: case study from Marcellus and Woodford. In: SPE/AAPG/SEG unconventional resources technology conference, unconventional resources technology conference. Austin, Texas, USA, p 15

  • Gupta I, Sondergeld C, Rai C (2018a) Applications of nanoindentation for reservoir characterization in shales. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Gupta I, Sondergeld C, Rai C, Hofmann R (2018b) Water weakening: case study from Marcellus, Woodford, Eagle Ford and Wolfcamp. In: 52nd U.S. rock mechanics/geomechanics symposium. American Rock Mechanics Association, Seattle, Washington, p 9

  • Gupta I, Rai C, Sondergeld C, Hofmann R (2019) Water weakening: a laboratory study of marcellus. Eagle Ford, and Wolfcamp Shales, SPE Reservoir Evaluation & Engineering, Woodford

    Google Scholar 

  • Han Q, Qu Z, Ye Z (2018) Research on the mechanical behaviour of shale based on multiscale analysis. R Soc Open Sci 5(10):181039

    Article  Google Scholar 

  • Hansen LN, David EC, Brantut N, Wallis D (2020) Insight into the microphysics of antigorite deformation from spherical nanoindentation. Philos Trans R Soc A 378(2165):20190197

    Article  Google Scholar 

  • Harding DS (1995) Cracking in brittle materials during low-load indentation and its relation to fracture toughness. Dissertation, Rice University

  • Harding D, Oliver W, Pharr G (1994) Cracking during nanoindentation and its use in the measurement of fracture toughness. MRS Online Proceedings Library Archive 356

  • Haušild P, Materna A, Kocmanová L, Matějíček J (2016) Determination of the individual phase properties from the measured grid indentation data. J Mater Res 31(22):3538–3548

    Article  Google Scholar 

  • Haušild P, Materna A, Kocmanová L, Matějíček J (2017) Some issues in relations between microstructure and indentation measurements. In: Šandera P (ed) Solid state phenomena. Trans Tech Publ, pp 131–136

  • Heap M, Baud P, Meredith P, Bell A, Main I (2009) Time-dependent brittle creep in darley dale sandstone. J Geophys Res Solid Earth 114(B7). https://doi.org/10.1029/2008JB006212

  • Hintsala ED, Hangen U, Stauffer DD (2018) High-throughput nanoindentation for statistical and spatial property determination. JOM 70(4):494–503

    Article  Google Scholar 

  • Hou D, Zhang G, Pant R, Shen J, Liu M, Luo H (2016) Nanoindentation characterization of a ternary clay-based composite used in ancient Chinese construction. Materials 9(11):866

    Article  Google Scholar 

  • Hrbek V, Koudelková V (2017) Grid indentation and statistic deconvolution: limitations and accuracy. In: Ryparová P, Tesárek P (ed) Key engineering materials. Trans Tech Publ, pp 15–22

  • Hu Z, Du Y, Luo H, Zhong B, Lu H (2014) Internal deformation measurement and force chain characterization of mason sand under confined compression using incremental digital volume correlation. Exp Mech 54(9):1575–1586

    Article  Google Scholar 

  • Huang H, Zhao H (2014) In Situ nanoindentation and scratch testing inside scanning electron microscopes: opportunities and challenges. Sci Adv Mater 6:875–889

    Article  Google Scholar 

  • Huang Y, Liu X, Zhou Y, Ma Z, Lu C (2011) Mathematical analysis on the uniqueness of reverse algorithm for measuring elastic-plastic properties by sharp indentation. J Mater Sci Technol 27(7):577–584

    Article  Google Scholar 

  • Huang H, Zhao H, Mi J, Yang J, Wan S, Xu L, Ma Z (2012) A novel and compact nanoindentation device for in situ nanoindentation tests inside the scanning electron microscope. AIP Adv 2(1):012104

    Article  Google Scholar 

  • Huen WY, Lee H, Vimonsatit V, Mendis P (2020) Relationship of stiffness-based indentation properties using continuous-stiffness-measurement method. Materials 13(1):97

    Article  Google Scholar 

  • Hull KL, Abousleiman YN, Han Y, Al-Muntasheri GA, Hosemann P, Parker SS, Howard CB (2017) Nanomechanical characterization of the tensile modulus of rupture for kerogen-rich shale. SPE J 22(04):1024–1033

    Article  Google Scholar 

  • Jung-Min L, Chan-Joo L, Kyung-Hun L, Byung-Min K (2012) Effects of elastic-plastic properties of materials on residual indentation impressions in nano-indentation using sharp indenter. Trans Nonferr Met Soc China 22:s585–s595

    Article  Google Scholar 

  • Kabir P, Akono A-T (2018) Fluid-rock reactions in Mt. Simon Sandstone at microscopic length-scale. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Kadali S, Sharma S, Singh D (2013) Application of nanoindentation to establish influence of heat on soils. Eng Geol 162:14–21

    Article  Google Scholar 

  • Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater 56(14):3523–3532

    Article  Google Scholar 

  • Kalo K (2017) Microstructural characterization and micromechanical modeling of oolitic porous rocks. Mechanical-Civil Engineering, University of Lorraine, Nancy

    Google Scholar 

  • Kang J (2013) Determination of elastic-plastic and visco-plastic material properties from instrumented indentation curves. University of Nottingham, Nottingham

    Google Scholar 

  • Kashani M, Madhavan V (2011) Analysis and correction of the effect of sample tilt on results of nanoindentation. Acta Mater 59(3):883–895

    Article  Google Scholar 

  • Keller LM, Schwiedrzik JJ, Gasser P, Michler J (2017) Understanding anisotropic mechanical properties of shales at different length scales: in situ micropillar compression combined with finite element calculations. J Geophys Res Solid Earth 122(8):5945–5955

    Article  Google Scholar 

  • Komanduri R, Lu H, Subramanian V, Luo H, Wang F, Cooper WL (2011) Mechanics of granular materials: experimentation and simulations for determining the compressive and shear behaviors of sand at granular and meso scales. Oklahoma State University Stillwater School of Mechanical and Aerospace Engineering

  • Kong L, Ostadhassan M, Fereshtenejad S, Song J-J, Li C (2018) Anisotropy analysis of 3D printed gypsum rocks integrating pulse-transmission, nanoindentation and micro-CT techniques. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Kong L, Ostadhassan M, Zamiran S, Liu B, Li C, Marino GG (2019) Geomechanical upscaling methods: comparison and verification via 3D printing. Energies 12(3):382

    Article  Google Scholar 

  • Konstantinidis AA, Frantziskonis G, Askes H, Aifantis EC (2016) The use of nanoindentation for determining internal lengths and the constitutive response of monument materials: models and experiments. J Mech Behav Mater 25(1–2):57–60

    Article  Google Scholar 

  • Kossovich E, Epshtein S, Dobryakova N, Minin M, Gavrilova D (2017) Mechanical properties of thin films of coals by nanoindentation. In: Conference on physical and mathematical modeling of earth and environment processes. Springer, pp 45–50

  • Kossovich EL, Borodich FM, Epshtein SA, Galanov BA, Minin MG, Prosina VA (2019) Mechanical, structural and scaling properties of coals: depth-sensing indentation studies. Appl Phys A 125(3):195

    Article  Google Scholar 

  • Koudelka P, Kytýř D, Koudelková V, Lukeš J, Doktor T, Valach J (2014) Material testing of natural stones used in historical buildings based on scanning electron microscopy and nanoindentation. Key Eng Mater 586:186–189

    Article  Google Scholar 

  • Kranjc K (2017) Characterizing structure, properties, and deformation in metallic glasses and olivine using instrumented nanoindentation. Institute of Materials Science and Engineering, Washington University in St. Louis, p 130

  • Kranjc K, Rouse Z, Flores KM, Skemer P (2016) Low-temperature plastic rheology of olivine determined by nanoindentation. Geophys Res Lett 43(1):176–184

    Article  Google Scholar 

  • Kumamoto KM, Thom CA, Wallis D, Hansen LN, Armstrong DE, Warren JM, Goldsby DL, Wilkinson AJ (2017) Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine. Sci Adv 3(9):e1701338

    Article  Google Scholar 

  • Kumar V, Sondergeld CH, Rai CS (2012a) Nano to macro mechanical characterization of shale. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  • Kumar V, Curtis ME, Gupta N, Sondergeld CH, Rai CS (2012b) Estimation of elastic properties of organic matter in Woodford Shale through nanoindentation measurements. In: SPE Canadian unconventional resources conference. Society of Petroleum Engineers, Calgary, Alberta, Canada, p 11

  • Kumar V, Sondergeld C, Rai CS (2015) Effect of mineralogy and organic matter on mechanical properties of shale. Interpretation 3(3):SV9–SV15

    Article  Google Scholar 

  • Lawn BR, Evans A, Marshall D (1980) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 63(9–10):574–581

    Article  Google Scholar 

  • Lebedev M, Wilson MEJ, Mikhaltsevitch V (2014a) An experimental study of solid matrix weakening in water-saturated Savonnières limestone. Geophys Prospect 62(6):1253–1265

    Article  Google Scholar 

  • Lebedev M, Mikhaltsevitch V, Carson M, Pervukhina M, Gurevich B (2014b) Softening of rocks matrix due to water flood: experimental study. SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, pp 2760–2765

  • Lebedev M, Zhang Y, Sarmadivaleh M, Barifcani A, Al-Khdheeawi E, Iglauer S (2017) Carbon geosequestration in limestone: pore-scale dissolution and geomechanical weakening. Int J Greenhouse Gas Control 66:106–119

    Article  Google Scholar 

  • Li W, Sakhaee-Pour A (2016) Macroscale Young’s moduli of shale based on nanoindentations. Petrophysics 57(06):597–603

    Google Scholar 

  • Li Y, Kanouté P, François M (2015) Disturbance induced by surface preparation on instrumented indentation test. Mater Sci Eng, A 642:381–390

    Article  Google Scholar 

  • Li C, Ostadhassan M, Kong L (2017) Nanochemo-mechanical characterization of organic shale through AFM and EDS. SEG technical program expanded abstracts 2017, society of exploration geophysicists, pp 3837–3840

  • Li C, Ostadhassan M, Kong L (2018) Effect of organic matter on nano-mechanical properties of organic-rich shale. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Li X, Liu Z, Cui S, Luo C, Li C, Zhuang Z (2019a) Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning. Comput Methods Appl Mech Eng 347:735–753

    Article  MathSciNet  MATH  Google Scholar 

  • Li C, Ostadhassan M, Abarghani A, Fogden A, Kong L (2019b) Multi-scale evaluation of mechanical properties of the Bakken shale. J Mater Sci 54(3):2133–2151

    Article  Google Scholar 

  • Li C, Ostadhassan M, Kong L, Bubach B (2019c) Multi-scale assessment of mechanical properties of organic-rich shales: a coupled nanoindentation, deconvolution analysis, and homogenization method. J Pet Sci Eng 174:80–91

    Article  Google Scholar 

  • Liu Y (2015) Fracture toughness assessment of shales by nanoindentation. Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Cambridge, p 80

    Google Scholar 

  • Liu K (2018) Microstructures and nanomechanical properties of the bakken shale. University of North Dakota, Grand Forks, North Dakota, p 238

    Google Scholar 

  • Liu K, Ostadhassan M (2017) Microstructural and geomechanical analysis of Bakken shale at nanoscale. J Pet Sci Eng 153:133–144

    Article  Google Scholar 

  • Liu K, Ostadhassan M, Bubach B (2016) Applications of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks. J Nat Gas Sci Eng 35:1310–1319

    Article  Google Scholar 

  • Liu K, Ostadhassan M, Li C, Alexeyev A, Hou X (2017a) Fracture toughness measurement of shales using nano-indentation: the bakken case study. In: 51st U.S. rock mechanics/geomechanics symposium. American Rock Mechanics Association, San Francisco, California, USA, p 6

  • Liu K, Ostadhassan M, Li C (2017b) Quantifying the nano-mechanical signature of shale oil formations by nanoindentation. In: Unconventional resources technology conference society of exploration geophysicists. American Association of Petroleum, Austin, Texas, pp 2075–2083

  • Liu K, Ostadhassan M, Bubach B, Ling K, Tokhmechi B, Robert D (2018a) Statistical grid nanoindentation analysis to estimate macro-mechanical properties of the Bakken Shale. J Nat Gas Sci Eng 53:181–190

    Article  Google Scholar 

  • Liu K, Ostadhassan M, Bubach B (2018b) Application of nanoindentation to characterize creep behavior of oil shales. J Pet Sci Eng 167:729–736

    Article  Google Scholar 

  • Liu K, Ostadhassan M, Wang H (2018c) Creep behavior of shale-nanoindentation experiments. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Liu K, Ostadhassan M, Bubach B, Dietrich R, Rasouli V (2018d) Nano-dynamic mechanical analysis (nano-DMA) of creep behavior of shales: Bakken case study. J Mater Sci 53(6):4417–4432

    Article  Google Scholar 

  • Liu K, Ostadhassan M, Xu X, Bubach B (2019a) Abnormal behavior during nanoindentation holding stage: characterization and explanation. J Pet Sci Eng 173:733–747

    Article  Google Scholar 

  • Liu Y, Xiong Y, Liu K, Yang C, Peng P (2019b) Indentation size and loading rate sensitivities on mechanical properties and creep behavior of solid bitumen. Int J Coal Geol 216:103295

    Article  Google Scholar 

  • Lu Y, Li Y, Wu Y, Luo S, Jin Y, Zhang G (2019) Characterization of shale softening by large volume-based nanoindentation. Rock Mechanics and Rock Engineering, pp 1–17

  • Lucas BN (1997) An experimental investigation of creep and viscoelastic properties using depth-sensing indentation techniques. University of Tennessee, Knoxville, p 250

    Google Scholar 

  • Lucas B, Oliver W (1999) Indentation power-law creep of high-purity indium. Metall Mater Trans A 30(3):601–610

    Article  Google Scholar 

  • Lucca D, Herrmann K, Klopfstein M (2010) Nanoindentation: measuring methods and applications. CIRP Ann 59(2):803–819

    Article  Google Scholar 

  • Luo H, Du Y, Hu Z, Lu H (2015) High-strain rate compressive behavior of dry Mason sand under confinement. In: Song B, Casem D, Kimberley J (eds) Dynamic behavior of materials, vol 1. Springer, pp 325–333

  • Ma Y, Huang X, Song Y, Hang W, Yuan J, Zhang T (2019a) Orientation-independent yield stress and activation volume of dislocation nucleation in LiTaO3 single crystal by nanoindentation. Materials 12(17):2799

    Article  Google Scholar 

  • Ma F, Song J, Luo S, DeGroot DJ, Bai X, Zhang G (2019b) Distinct responses of nanostructured layered muscovite to uniform and nonuniform straining. J Mater Sci 54(2):1077–1098

    Article  Google Scholar 

  • Ma Z, Gamage RP, Rathnaweera T, Kong L (2019c) Review of application of molecular dynamic simulations in geological high-level radioactive waste disposal. Appl Clay Sci 168:436–449

    Article  Google Scholar 

  • Magnenet V, Auvray C, Francius G, Giraud A (2011) Determination of the matrix indentation modulus of Meuse/Haute-Marne argillite. Appl Clay Sci 52(3):266–269

    Article  Google Scholar 

  • Mahabadi O, Randall N, Zong Z, Grasselli G (2012) A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity. Geophys Res Lett 39(1). https://doi.org/10.1029/2011GL050411

  • Maier V, Durst K, Mueller J, Backes B, Höppel HW, Göken M (2011) Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J Mater Res 26(11):1421–1430

    Article  Google Scholar 

  • Maier-Kiener V, Durst K (2017) Advanced nanoindentation testing for studying strain-rate sensitivity and activation volume. JOM 69(11):2246–2255

    Article  Google Scholar 

  • Manjunath GL, Jha B (2019) Nanoscale fracture mechanics of Gondwana coal. Int J Coal Geol 204:102–112

    Article  Google Scholar 

  • Maruvanchery V (2019) Effects of extreme environmental conditions on the mesoscale and nanoscale properties of calcite-cemented sandstone. Colorado School of Mines, Arthur Lakes Library, Golden

    Google Scholar 

  • Maruvanchery V, Kim E (2020) Mechanical characterization of thermally treated calcite-cemented sandstone using nanoindentation, scanning electron microscopy and automated mineralogy. Int J Rock Mech Min Sci 125:104158

    Article  Google Scholar 

  • Mashhadian M, Verde A, Sharma P, Abedi S (2018) Assessing mechanical properties of organic matter in shales: Results from coupled nanoindentation/SEM-EDX and micromechanical modeling. J Pet Sci Eng 165:313–324

    Article  Google Scholar 

  • Mason J, Jordan T, Carloni J, Baker S, Zehnder A (2014) Dependence of micro-mechanical properties on lithofacies: indentation experiments on Marcellus Shale. In: Unconventional resources technology conference, Denver, Colorado, 25–27 August 2014, Society of Exploration Geophysicists, American Association of Petroleum, pp 1758–1770

  • Mayo M, Nix W (1988) A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall 36(8):2183–2192

    Article  Google Scholar 

  • Mayo M, Siegel R, Narayanasamy A, Nix W (1990) Mechanical properties of nanophase TiO2 as determined by nanoindentation. J Mater Res 5(5):1073–1082

    Article  Google Scholar 

  • Mba K, Prasad M (2010) Mineralogy and its contribution to anisotropy and kerogen stiffness variations with maturity in the Bakken Shales. SEG technical program expanded abstracts, pp 2612–2616

  • Mighani S, Taneja S, Sondergeld CH, Rai CS (2015) Nanoindentation creep measurements on shale. In: 49th U.S. rock mechanics/geomechanics symposium. American Rock Mechanics Association, San Francisco, California, p 7

  • Mighani S, Bernabe Y, Mok U, Pec M, Evans B (2018a) Can we use nanoindentation to derive the poroelastic P Arameters of microporous rocks?-experimental evidence. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Mighani S, Bernabe Y, Mok U, Pec M, Evans B (2018b) Can we use nanoindentation to derive the poroelastic parameters of microporous rocks?-Experimental evidence. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Mighani S, Bernabé Y, Boulenouar A, Mok U, Evans B (2019) Creep deformation in Vaca Muerta shale from nanoindentation to triaxial experiments. J Geophys Res Solid Earth 124(8):7842–7868

    Article  Google Scholar 

  • Mikowski A, Soares P, Wypych F, Lepienski CM (2008) Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique. Am Miner 93(5–6):844–852

    Article  Google Scholar 

  • Miller M, Bobko C, Vandamme M, Ulm F-J (2008) Surface roughness criteria for cement paste nanoindentation. Cem Concr Res 38(4):467–476

    Article  Google Scholar 

  • Monclús MA, Lotfian S, Molina-Aldareguía JM (2014) Tip shape effect on hot nanoindentation hardness and modulus measurements. Int J Precis Eng Manuf 15(8):1513–1519

    Article  Google Scholar 

  • Mound B, Pharr G (2019) Nanoindentation of fused quartz at loads near the cracking threshold. Exp Mech 59(3):369–380

    Article  Google Scholar 

  • Nadukuru SS (2013) Static fatigue: a key cause of time effects in sand, civil engineering. University of Michigan, Ann Arbor, p 242

    Google Scholar 

  • Nguyen QD, Chung K-H (2019) Effect of tip shape on nanomechanical properties measurements using AFM. Ultramicroscopy 202:1–9

    Article  Google Scholar 

  • Nowak JD, Rzepiejewska-Malyska KA, Major RC, Warren OL, Michler J (2010) In-situ nanoindentation in the SEM. Mater Today 12:44–45

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  • Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20

    Article  Google Scholar 

  • Ortega JA, Ulm F-J, Abousleiman Y (2009) The nanogranular acoustic signature of shale. Geophysics 74(3):D65–D84

    Article  Google Scholar 

  • Ostadhassan M, Liu K, Li C, Khatibi S (2018) Fine scale characterization of shale reservoirs: methods and challenges. Springer, Berlin

    Book  Google Scholar 

  • Packard C, Wheeler J, Trenkle J, Schuh C (2016) Nanoindentation: high temperature. In: Reference module in materials science and materials engineering

  • Pant RR (2013) Nanoindentation characterization of clay minerals and clay-based hybrid bio-geomaterials. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, p 111

    Google Scholar 

  • Pant R, Hu L, Zhang G (2013) Anisotropy of mica probed by nanoindentation. In: Laloui L, Ferrari A (eds) Multiphysical testing of soils and shales. Springer, Berlin, pp 239–245

    Chapter  Google Scholar 

  • Park HK (2018) Characterisation and performance of pindan soils modified with polymer stabilisers. Civil Engineering, Curtin University, Bentley

    Google Scholar 

  • Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng R Rep 91:1–36

    Article  Google Scholar 

  • Pathak S, Shaffer J, Kalidindi SR (2009) Determination of an effective zero-point and extraction of indentation stress–strain curves without the continuous stiffness measurement signal. Scr Mater 60(6):439–442

    Article  Google Scholar 

  • Peng ZJ, Wen T, Gong JH, Wang CB, Fu ZQ, Miao HZ (2012) Relationship between the ratio of Young’s modulus to hardness and the elastic recovery of nanoindentation. In: Key engineering materials. Trans Tech Publ, pp 5–8

  • Penumadu D, Dutta AK, Luo X, Thomas KG (2009) Nano and neutron science applications for geomechanics. KSCE J Civ Eng 13(4):233–242

    Article  Google Scholar 

  • Peykov D, Martin E, Chromik RR, Gauvin R, Trudeau M (2012) Evaluation of strain rate sensitivity by constant load nanoindentation. J Mater Sci 47(20):7189–7200

    Article  Google Scholar 

  • Phani PS, Oliver W, Pharr G (2017) On the measurement of power law creep parameters from instrumented indentation. JOM 69(11):2229–2236

    Article  Google Scholar 

  • Pharr G (1998) Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng, A 253(1–2):151–159

    Article  Google Scholar 

  • Prach O, Minnert C, Johanns KE, Durst K (2019) A new nanoindentation creep technique using constant contact pressure. J Mater Res 34(14):2492–2500

    Article  Google Scholar 

  • Qiu Y (2019) Upscaling micromechanical indentation properties to mesoscale behaviour in geomaterials. Department of Civil Engineering, University of Toronto, Toronto, p 96

    Google Scholar 

  • Randall NX, Vandamme M, Ulm F-J (2009) Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. J Mater Res 24(3):679–690

    Article  Google Scholar 

  • Raza A, Gholami R, Rabiei M, Rasouli V, Rezaee R, Fakhari N (2019) Impact of geochemical and geomechanical changes on CO2 sequestration potential in sandstone and limestone aquifers. Greenh Gases Sci Technol 9(5):905–923

    Article  Google Scholar 

  • Saenger EH, Lebedev M, Uribe D, Osorno M, Vialle S, Duda M, Iglauer S, Steeb H (2016) Analysis of high-resolution X-ray computed tomography images of Bentheim sandstone under elevated confining pressures. Geophys Prospect 64(4):848–859

    Article  Google Scholar 

  • Sahoo RK, Rout PP, Singh SK, Mishra BK, Mohapatra BK (2017) Synergetic surface and chemical durability study of the aesthetically enhanced natural quartz by heat treatment. Metall Mater Trans A 48(3):1111–1120

    Article  Google Scholar 

  • Schuh CA, Packard CE, Lund AC (2006) Nanoindentation and contact-mode imaging at high temperatures. J Mater Res 21(3):725–736

    Article  Google Scholar 

  • Sebastiani M, Bemporad E, Carassiti F, Schwarzer N (2011) Residual stress measurement at the micrometer scale: focused ion beam (FIB) milling and nanoindentation testing. Philos Mag 91(7–9):1121–1136

    Article  Google Scholar 

  • Sebastiani M, Johanns KE, Herbert EG, Pharr GM (2015a) Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges. Curr Opin Solid State Mater Sci 19(6):324–333

    Article  Google Scholar 

  • Sebastiani M, Johanns K, Herbert EG, Carassiti F, Pharr GM (2015b) A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings. Philos Mag 95(16–18):1928–1944

    Article  Google Scholar 

  • Sharma P, Prakash R, Abedi S (2019) Effect of temperature on nano-and microscale creep properties of organic-rich shales. J Pet Sci Eng 175:375–388

    Article  Google Scholar 

  • Shi X, Yang L, Li D, Ding X (2018) Mechanical characterization of Longmaxi Marine Shale by nanoindentation. In: ISRM international symposium-10th Asian rock mechanics symposium, international society for rock mechanics and rock engineering

  • Shi X, He Z, Long S, Peng Y, Li D, Jiang S (2019) Loading rate effect on the mechanical behavior of brittle longmaxi shale in nanoindentation. Int J Hydrog Energy 44(13):6481–6490

    Article  Google Scholar 

  • Shi X, Jiang S, Wang Z, Bai B, Xiao D, Tang M (2020a) Application of nanoindentation technology for characterizing the mechanical properties of shale before and after supercritical CO2 fluid treatment. J CO2 Util 37:158–172

    Article  Google Scholar 

  • Shi X, Jiang S, Yang L, Tang M, Xiao D (2020b) Modeling the viscoelasticity of shale by nanoindentation creep tests. Int J Rock Mech Min Sci 127:104210

    Article  Google Scholar 

  • Shukla P (2013) Nanoindentation studies on shales. Mewbourne school of petroleum and geological engineering, University of Oklahoma, Norman

    Google Scholar 

  • Shukla P, Kumar V, Curtis M, Sondergeld CH, Rai CS (2013) Nanoindentation studies on shales. In: 47th U.S. rock mechanics/geomechanics symposium. American Rock Mechanics Association, San Francisco, California, p 10

  • Shukla P, Taneja S, Sondergeld C, Rai C (2015) Nanoindentation measurements on rocks, fracture, fatigue, failure, and damage evolution, vol 5. Springer, Berlin, pp 99–105

    Google Scholar 

  • Singh DN (2019) Novel techniques to simulate and monitor contaminant-geomaterial interactions. Indian Geotech J 49(1):2–36

    Article  Google Scholar 

  • Skrzypczak M, Guerret-Piecourt C, Bec S, Loubet J-L, Guerret O (2009) Use of a nanoindentation fatigue test to characterize the ductile–brittle transition. J Eur Ceram Soc 29(6):1021–1028

    Article  Google Scholar 

  • Slim MI (2016) Creep properties of source rocks using indentation: the role of organic matter on texture and creep rates. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, p 404

    Google Scholar 

  • Slim M, Abedi S, Bryndzia LT, Ulm F-J (2018) Role of organic matter on nanoscale and microscale creep properties of source rocks. J Eng Mech 145(1):04018121

    Article  Google Scholar 

  • Sly MK, Thind AS, Mishra R, Flores KM, Skemer P (2019) Low-temperature rheology of calcite. Geophys J Int 221:129–141. https://doi.org/10.1093/gji/ggz577

    Article  Google Scholar 

  • Su D, Li X (2014) Investigation of near-surface mechanical properties of materials using atomic force microscopy. Exp Mech 54(1):11–24

    Article  MathSciNet  Google Scholar 

  • Su C, Herbert EG, Sohn S, LaManna JA, Oliver WC, Pharr GM (2013) Measurement of power-law creep parameters by instrumented indentation methods. J Mech Phys Solids 61(2):517–536

    Article  Google Scholar 

  • Su X, Chen P, Ma T (2019) Evaluation of shale fracture toughness based on micrometer indentation test. Petroleum 5(1):52–57

    Article  Google Scholar 

  • Sudharshan Phani P, Oliver WC (2019) A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing. Mater Des 164:107563

    Article  Google Scholar 

  • Takagi H, Fujiwara M (2014) Set of conversion coefficients for extracting uniaxial creep data from pseudo-steady indentation creep test results. Mater Sci Eng, A 602:98–104

    Article  Google Scholar 

  • Tang Z, Guo Y, Jia Z, Li Y, Wei Q (2015) Examining the effect of pileup on the accuracy of sharp indentation testing. Adv Mater Sci Eng 2015. https://doi.org/10.1155/2015/528729

    Article  Google Scholar 

  • Tankiewicz M (2018) Application of the nanoindentation technique for the characterization of varved clay. Open Geosci 10(1):902–910

    Article  Google Scholar 

  • Thom CA (2019) Scale-dependent plasticity and nanoindentation creep of geologic materials. University of Pennsylvania, Philadelphia

    Google Scholar 

  • Thom CA, Goldsby DL (2019) Nanoindentation Studies of Plasticity and Dislocation Creep in Halite. Geosciences 9(2):79

    Article  Google Scholar 

  • Thom C, Brodsky E, Carpick R, Pharr G, Oliver W, Goldsby D (2017) Nanoscale roughness of natural fault surfaces controlled by scale-dependent yield strength. Geophys Res Lett 44(18):9299–9307

    Article  Google Scholar 

  • Thom C, Carpick R, Goldsby D (2018) Constraints on the physical mechanism of frictional aging from nanoindentation. Geophys Res Lett 45(24):13306–13311

    Article  Google Scholar 

  • Tian S, Zhang P, Sheng M, Wang T, Tang J, Xiao L (2020) Modification of microscopic properties of shale by carbonic acid treatment: implications for CO2-based fracturing in Shale Formations. Energy Fuels 34:3458–3466. https://doi.org/10.1021/acs.energyfuels.9b03772

    Article  Google Scholar 

  • Toyama H, Kishida H, Yonezu A (2018) Characterization of fatigue crack growth of concrete mortar under cyclic indentation loading. Eng Fail Anal 83:156–166

    Article  Google Scholar 

  • Tyurin AI, Victorov SD, Kochanov AN, Shuklinov AV, Pirozhkova TS (2016) Methods of micro-and nanoindentation for characterization of local physical and mechanical properties of multiphase materials. In: AIP conference proceedings. AIP Publishing, p 020227

  • Ulm F-J, Abousleiman Y (2006) The nanogranular nature of shale. Acta Geotech 1(2):77–88

    Article  Google Scholar 

  • Valdes CC, Heidari Z (2017) Application of nanoindentation for uncertainty assessment of elastic properties in mudrocks from micro-to well-log scales. Geophysics 82(6):D327–D339

    Article  Google Scholar 

  • Vandamme M, Ulm F-J (2013) Nanoindentation investigation of creep properties of calcium silicate hydrates. Cem Concr Res 52:38–52

    Article  Google Scholar 

  • Vandamme M, Tweedie CA, Constantinides G, Ulm F-J, Van Vliet KJ (2012) Quantifying plasticity-independent creep compliance and relaxation of viscoelastoplastic materials under contact loading. J Mater Res 27(1):302–312

    Article  Google Scholar 

  • Veytskin YB, Tammina VK, Bobko CP, Hartley PG, Clennell MB, Dewhurst DN, Dagastine RR (2017) Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry. Geomech Energy Environ 9:21–35

    Article  Google Scholar 

  • Vialle S, Lebedev M (2015) Heterogeneities in the elastic properties of microporous carbonate rocks at the microscale from nanoindentation tests. SEG technical program expanded abstracts 2015. Society of Exploration Geophysicists, pp 3279–3284

  • Vialle S, Pazdniakou A, Adler P (2018) Prediction of the macroscopic mechanical properties of carbonate from nano-indentation tests. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Viktorov S, Golovin YI, Kochanov A, Tyurin A, Shuklinov A, Shuvarin I, Pirozhkova T (2014) Micro-and nano-indentation approach to strength and deformation characteristics of minerals. J Min Sci 50(4):652–659

    Article  Google Scholar 

  • Wang L, Liu X (2019) Correlation analysis of surface tilt effect on its mechanical properties by nano-indentation. Int J Precis Eng Manuf 20(3):327–335

    Article  Google Scholar 

  • Wang L, Zhang Y (2018) Elastic properties estimation of Longmaxi Shale in Sichuan Basin with nanoindentation. In: International geophysical conference, Beijing, China, 24–27 April 2018, Society of Exploration Geophysicists and Chinese Petroleum Society, pp 1232–1235

  • Wang F, Fu B, Mirshams RA, Cooper W, Komanduri R, Lu H (2011) Mechanical properties measurement of sand grains by nanoindentation. In: Proulx T (ed) Time dependent constitutive behavior and fracture/failure processes, vol 3. Springer, pp 121–130

  • Wang J, Hodgson PD, Yang C (2012) Effects of mechanical properties on the contact profile in Berkovich nanoindentation of elastoplastic materials. J Mater Res 27(1):313–319

    Article  Google Scholar 

  • Wang F, Fu B, Luo H, Staggs S, Mirshams R, Cooper W, Park S, Kim M, Hartley C, Lu H (2014) Characterization of the grain-level mechanical behavior of Eglin sand by nanoindentation. Exp Mech 54(5):871–884

    Article  Google Scholar 

  • Wang S, Liu K, Han J, Ling K, Wang H, Jia B (2019a) Investigation of properties alternation during super-critical CO2 injection in shale. Appl Sci 9(8):1686

    Article  Google Scholar 

  • Wang S, Xu H, Wang Y, Kong L, Wang Z, Liu S, Zhang J, Zhao H (2019b) Design and testing of a cryogenic indentation apparatus. Rev Sci Instrum 90(1):015117

    Article  Google Scholar 

  • Wheeler J, Michler J (2013) Invited article: indenter materials for high temperature nanoindentation. Rev Sci Instrum 84(10):101301

    Article  Google Scholar 

  • Wheeler J, Armstrong D, Heinz W, Schwaiger R (2015) High temperature nanoindentation: the state of the art and future challenges. Curr Opin Solid State Mater Sci 19(6):354–366

    Article  Google Scholar 

  • Whitney DL, Broz M, Cook RF (2007) Hardness, toughness, and modulus of some common metamorphic minerals. Am Miner 92(2–3):281–288

    Article  Google Scholar 

  • Wilkinson TM (2014) High-resolution, mechanical property mapping in oil shales. Metallurgical and Materials Engineering, Colorado School of Mines, p 75

  • Wilkinson TM, Zargari S, Prasad M, Packard CE (2015) Optimizing nano-dynamic mechanical analysis for high-resolution, elastic modulus mapping in organic-rich shales. J Mater Sci 50(3):1041–1049

    Article  Google Scholar 

  • Xian S, Jiang S, Shuangfang L, Zhiliang H, Dongjie L, Zhixuan W, Dianshi X (2019) Investigation of mechanical properties of bedded shale by nanoindentation tests: a case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing. China. Pet Explor Dev 46(1):163–172

    Article  Google Scholar 

  • Xiang D, Chen Z, Yang Z, Wang S, Wang Q, Hou D, Zhang G (2017) Probing the mechanical properties of shales by nanoindentation. In: Brandon TL, Valentine RJ (eds) Geotechnical frontiers. pp 497–507

  • Xiao J, Ding D, Xu G, Jiang F (2008) Waveform effect on quasi-dynamic loading condition and the mechanical properties of brittle materials. Int J Rock Mech Min Sci 45(4):621–626

    Article  Google Scholar 

  • Xie Q (2016) Mechanical characterization of kerogen in black siliceous shale via nanoindentation. SEG technical program expanded abstracts 2016, Society of Exploration Geophysicists, pp 3348–3353

  • Xu Z-H, Li X (2007) Effect of sample tilt on nanoindentation behaviour of materials. Philos Mag 87(16):2299–2312

    Article  Google Scholar 

  • Xu Z-H, Li X (2008) Residual stress determination using nanoindentation technique. In: Yang F, Li JCM (eds) Micro and nano mechanical testing of materials and devices. Springer, Berlin, pp 136–150

  • Xu T, Du Y, Luo H, Hu Z, Wang X, Guo L, Lu H (2018) Characterization of the mechanical behavior of colorado mason sand at grain-level by nanoindentation. Exp Mech 58(3):449–463

    Article  Google Scholar 

  • Yang Z, Wang L, Zhang G, Ho C (2016) Micromechanical characterization of fluid–shale interactions via nanoindentation. In: SPE Asia pacific hydraulic fracturing conference. Society of Petroleum Engineers

  • Yang H, Luo S, Zhang G, Song J (2017) Elasticity of clay shale characterized by nanoindentation. In: 51st U.S. rock mechanics/geomechanics symposium. American Rock Mechanics Association, San Francisco, California, USA, p 7

  • Yang Z, Wang L, Chen Z, Xiang D, Hou D, Ho CL, Zhang G (2018) Micromechanical characterization of fluid/shale interactions by means of nanoindentation. SPE Reservoir Eval Eng 21(02):405–417

    Article  Google Scholar 

  • Yang S-Q, Yin P-F, Huang Y-H (2019) Experiment and discrete element modelling on strength, deformation and failure behaviour of shale under Brazilian compression. Rock Mech Rock Eng 52(11):4339–4359

    Article  Google Scholar 

  • Yang S-Q, Yin P-F, Ranjith P (2020) Experimental Study on mechanical behavior and brittleness characteristics of Longmaxi Formation Shale in changning, China. Rock Mechanics and Rock Engineering, Sichuan Basin, pp 1–23

    Google Scholar 

  • Yin H, Zhang G (2011a) Nanoindentation behavior of muscovite subjected to repeated loading. J Nanomech Micromech 1(2):72–83

    Article  Google Scholar 

  • Yin H, Zhang G (2011b) Cyclic nanoindentation shakedown of muscovite and its elastic modulus measurement, MEMS and nanotechnology, vol 4. Springer, Berlin, pp 83–92

    Google Scholar 

  • Yu H, Zhang Y, Lebedev M, Han T, Verrall M, Wang Z, Al-Khdheeawi E, Al-Yaseri A, Iglauer S (2018) Nanoscale geomechanical properties of Western Australian coal. J Pet Sci Eng 162:736–746

    Article  Google Scholar 

  • Zargari S (2015) Effect of thermal maturity on nanomechanical properties and porosity in organic rich shales (a Bakken shale case study). Petroleum Engineering, Colorado School of Mines, Golden, p 135

    Google Scholar 

  • Zargari S, Prasad M, Mba KC, Mattson E (2011) Organic maturity, hydrous pyrolysis, and elastic property in shales. In: Canadian unconventional resources conference. Society of Petroleum Engineers

  • Zargari S, Prasad M, Mba KC, Mattson ED (2013) Organic maturity, elastic properties, and textural characteristics of self resourcing reservoirs. Geophysics 78(4):D223–D235

    Article  Google Scholar 

  • Zargari S, Wilkinson TM, Packard CE, Prasad M (2016) Effect of thermal maturity on elastic properties of kerogen. Geophysics 81(2):M1–M6

    Article  Google Scholar 

  • Zeng Q, Feng Y, Xu S (2017) A discussion of “Application of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks” by K Liu, M Osatadhassan and B Bubach. J Nat Gas Sci Eng 42:187–189

    Article  Google Scholar 

  • Zeszotarski JC, Chromik RR, Vinci RP, Messmer MC, Michels R, Larsen JW (2004) Imaging and mechanical property measurements of kerogen via nanoindentation. Geochim Cosmochim Acta 68(20):4113–4119

    Article  Google Scholar 

  • Zhang G, Wei Z, Ferrell RE (2009) Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation. Appl Clay Sci 43(2):271–281

    Article  Google Scholar 

  • Zhang G, Wei Z, Ferrell RE, Guggenheim S, Cygan RT, Luo J (2010) Evaluation of the elasticity normal to the basal plane of non-expandable 2: 1 phyllosilicate minerals by nanoindentation. Am Miner 95(5–6):863–869

    Article  Google Scholar 

  • Zhang J, Hu L, Pant R, Yu Y, Wei Z, Zhang G (2013) Effects of interlayer interactions on the nanoindentation behavior and hardness of 2: 1 phyllosilicates. Appl Clay Sci 80:267–280

    Article  Google Scholar 

  • Zhang Y, Lebedev M, Sarmadivaleh M, Barifcani A, Iglauer S (2016) Change in geomechanical properties of limestone due to supercritical CO2 injection. In: SPE Asia pacific oil and gas conference and exhibition. Society of Petroleum Engineers, Perth, Australia, p 10

  • Zhang Y, Zhang Z, Sarmadivaleh M, Lebedev M, Barifcani A, Iglauer S (2017) Prediction of microscale rock mechanical performance from microCT images: heterogeneous coal as an example. In: 51st US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Zhang F, Guo H, Hu D, Shao J-F (2018a) Characterization of the mechanical properties of a claystone by nano-indentation and homogenization. Acta Geotech 13(6):1395–1404

    Article  Google Scholar 

  • Zhang Y, Lebedev M, Al-Yaseri A, Yu H, Nwidee LN, Sarmadivaleh M, Barifcani A, Iglauer S (2018b) Morphological evaluation of heterogeneous oolitic limestone under pressure and fluid flow using X-ray microtomography. J Appl Geophys 150:172–181

    Article  Google Scholar 

  • Zhang F, Hu W, Guo HQ, Hu DW, Sheng Q, Shao JF (2018c) Nanoindentation tests on granite after heat treatment. Rock Soil Mech 39:235–243 (In Chinese). https://doi.org/10.16285/j.rsm.2018.0052

  • Zhang Y, Lebedev M, Iglauer S (2018d) The nanoscale rock mechanical properties of different rank coal by nanoindentation test. In: 52nd U.S. rock mechanics/geomechanics symposium. American Rock Mechanics Association, Seattle, Washington, p 5

  • Zhang Y, Lebedev M, Al-Yaseri A, Yu H, Xu X, Iglauer S (2018e) Characterization of nanoscale rockmechanical properties and microstructures of a Chinese sub-bituminous coal. J Nat Gas Sci Eng 52:106–116

    Article  Google Scholar 

  • Zhang Y, Lebedev M, Al-Yaseri A, Yu H, Xu X, Sarmadivaleh M, Barifcani A, Iglauer S (2018f) Nanoscale rock mechanical property changes in heterogeneous coal after water adsorption. Fuel 218:23–32

    Article  Google Scholar 

  • Zhang P-P, Tian S-C, Sheng M, Wang T-Y, Khan WA, Xu Q, Xiao L-Z (2019) Effect of dilute acid treatment on adhesion properties of Longmaxi black shale. Pet Sci 16(6):1320–1331

    Article  Google Scholar 

  • Zhao J, Zhang D, Wu T, Tang H, Xuan Q, Jiang Z, Dai C (2018) Multiscale approach for mechanical characterization of organic-rich shale and its application. Int J Geomech 19(1):04018180

    Article  Google Scholar 

  • Zhu W, Hughes JJ, Bicanic N, Pearce CJ (2007) Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Mater Charact 58(11–12):1189–1198

    Article  Google Scholar 

  • Zhu W, Fonteyn MTJ, Hughes J, Pearce C (2009) Nanoindentation study of resin impregnated sandstone and early-age cement paste specimens. In: Bittnar Z, Bartos PJM, Němeček J, Šmilauer V, Zeman J (eds) Nanotechnology in construction 3. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 403–408

    Chapter  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the financial support provided by the China Scholarship Council (No. 201706420055). The authors also give thanks to the authors of all the literature cited in this paper and the researchers who have devoted themselves to nanoindentation tests of geomaterials. Finally, the authors also give thanks to Lilian Khaw who helped us to correct the grammar and structural issues of this article.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranjith Pathegama Gamage or Chengpeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Pathegama Gamage, R. & Zhang, C. Application of nanoindentation technology in rocks: a review. Geomech. Geophys. Geo-energ. Geo-resour. 6, 60 (2020). https://doi.org/10.1007/s40948-020-00178-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40948-020-00178-6

Keywords

Navigation