Skip to main content
Log in

Photocatalytic Activity of Copper(II) Oxide Nanoparticles Synthesized Using Serratula Coronata L. Extract

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Copper(II) oxide nanoparticles with an average size of 52 ± 5 nm are synthesized by wet combustion of the extract of coronate saw-wort (Serratula coronata L.) growing on the territory of Central Kazakhstan. The complex study of the structure and composition of the synthesized nanoparticles by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray phase analysis shows that the nanoparticles contain no additional impurities, have the monoclinic structure, and possess a high degree of crystallinity; the average size of crystallites is 28 ± 4 nm. Catalytic activity is tested in methylene blue dye degradation under exposure to visible light (500 W, 7500 lm). The degradation efficiency is studied as a function of catalyst mass and initial dye concentration. It is shown that even at a catalyst loading of 10 mg more than 54% of the dye degrades in the reaction mixture. The study of catalyst stability demonstrates that the efficiency of degradation decreases by 6.1 and 33.3% after the second and fifth test cycle, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. Khan, K. Saeed, and I. Khan, Arab. J. Chem. 12, 908 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  2. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, Beilstein J. Nanotechnol. 9, 1050 (2018). https://doi.org/10.3762/bjnano.9.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Anu Mary Ealia and M. P. Saravanakumar, IOP Conf. Ser.: Mater. Sci. Eng. 263 (2017). https://doi.org/10.1088/1757-899X/263/3/032019

  4. A. Boroumand Moghaddam, F. Namvar, M. Moniri, P. Md. Tahir, S. Azizi, and R. Mohamad, Molecules 20, 16540 (2015). https://doi.org/10.3390/molecules200916540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. P. D. Shankar, S. Shobana, I. Karuppusamy, A. Pugazhendhi, V. S. Ramkumar, S. Arvindnarayan, and G. Kumar, Enzyme Microb. Technol. 9, 28 (2016). https://doi.org/10.1016/j.enzmictec.2016.10.015

    Article  CAS  Google Scholar 

  6. J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, and Q. Li, Chem. Soc. Rev. 44, 6330 (2015). https://doi.org/10.1039/C5CS00133A

    Article  CAS  PubMed  Google Scholar 

  7. M. Grigore, E. Biscu, A. Holban, M. Gestal, and A. Grumezescu, Pharmaceuticals 9 (2016). https://doi.org/10.3390/ph9040075

  8. K. Phiwdang, S. Suphankij, W. Mekprasart, and W. Pecharapa, Energy Procedia 34, 740 (2013). https://doi.org/10.1016/J.EGYPRO.2013.06.808

    Article  CAS  Google Scholar 

  9. S. Reddy, B. E. Swamy Kumara, and H. Jayadevappa, Electrochim. Acta 61, 78 (2012). https://doi.org/10.1016/j.electacta.2011.11.091

    Article  CAS  Google Scholar 

  10. F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, L. Xie, and H. Li, RSC Adv. 6, 79343 (2016). https://doi.org/10.1039/C6RA13876D

  11. M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma, Chem. Rev. 116, 3722 (2016). https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  PubMed  Google Scholar 

  12. P. P. N. V. Kumar, U. Shameem, P. Kollu, R. L. Kalyani, and S. V. N. Pammi, J. BioNanoSci. 5, 135 (2015). https://doi.org/10.1007/s12668-015-0171-z

    Article  Google Scholar 

  13. K. R. Reddy, J. Mol. Struct. 1150, 553 (2017). https://doi.org/10.1016/j.molstruc.2017.09.005

    Article  CAS  Google Scholar 

  14. P. Yugandhar and T. Vasavi, Appl. Nanosci. 7, 417 (2017). https://doi.org/10.1007/s13204-017-0584-9

    Article  CAS  Google Scholar 

  15. R. Dobrucka, J. Inorg. Organomet. Polym 28, 812 (2018). https://doi.org/10.1007/s10904-017-0750-2

    Article  CAS  Google Scholar 

  16. C. Tamuly, I. Saikia, and M. Hazarika, RSC Adv. 4, 53229 (2014). https://doi.org/10.1039/C4RA10397A

  17. H. Siddiqui, M. S. Qureshi, and F. Z. Haque, Nano-Micro Letters 12 (2020). https://doi.org/10.1007/s40820-019-0357-y

  18. E. A. Clarke and R. Anliker, Organic Dyes and Pigments (Springer, Berlin, 1980). https://doi.org/10.1007/978-3-540-38522-6_7

  19. J. Clifton and J. B. Leikin, Am J. Ther. 10, 289 (2003). https://doi.org/10.1097/00045391-200307000-00009.

  20. A. A. Mashentseva, T. S. Seytembetov, S. M. Adekenov, B. I. Tuleuov, O. P. Loiko, and A. I. Khalitova, Russ. J. Gen. Chem. 81, 96 (2011). https://doi.org/10.1134/S1070363211010142

    Article  CAS  Google Scholar 

  21. S. A. Khan, F. Noreen, S. Kanwal, A. Iqbal, and G. Hussain, Mat. Sci. Eng. C-Mater 82, 46 (2018). https://doi.org/10.1039/C8RA03117G

    Article  CAS  Google Scholar 

  22. S. Li, Q. Lin, X. Liu, L. Yang, J. Ding, F. Dong, Y. Li, M. Irfan, and P. Zhang, RSC Adv. 8, 20277 (2018). https://doi.org/10.1039/C8RA03117G

  23. S. Jain and M. S. Mehata, Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property, Sci. Rep. 7, 15867 (2017). https://doi.org/10.1038/s41598-017-15724-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. P. Kuppusamy, M. M. Yusoff, G. P. Maniam, and N. Govindan, Saudi Pharm. J. 24, 473 (2016). https://doi.org/10.1016/j.jsps.2014.11.013

    Article  PubMed  Google Scholar 

  25. N. Sahu, D. Son, B. Chandrashekhar, D. B. Satpute, S. Saravanadevi, and R. A. Pandey, Int. Nano Lett. 6 (2016). https://doi.org/10.1007/s40089-016-0184-9

  26. S. Sukumar, A. Rudrasenan, and NambiarD. Padmanabhan, ACS Omega 5, 1040 (2020). https://doi.org/10.1021/acsomega.9b02857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. A. Mashentseva, D. I. Shlimas, A. L. Kozlovskiy, M. V. Zdorovets, A. V. Russakova, M. T. Kassymzhanov, and A. N. Borisenko, Catalysts 9 (2019). https://doi.org/10.3390/catal9090737

  28. A. Sahai, N. Goswami, S. D. Kaushik, and S. Tripathi, Applied Surface Science 390, 974 (2016). https://doi.org/10.1016/j.apsusc.2016.09.005

    Article  CAS  Google Scholar 

  29. R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K. S. Shivashangari, and V. Ravikumar, Spectrochim. Acta, Part A 121, 746–750 (2014). https://doi.org/10.1016/j.saa.2013.12.020

    Article  CAS  Google Scholar 

  30. R. Sivaraj, P. K. S. M. Rahman, P. Rajiv, S. Narendhran, R. Venckatesh, Spectrochim. Spectrochim. Acta, Part A 129, 255 (2014). https://doi.org/10.1016/j.saa.2014.03.027

    Article  CAS  Google Scholar 

  31. D. Y. Murzin, Catal. Sci. Technol. 1, 380 (2011). https://doi.org/10.1039/c0cy00084a

    Article  CAS  Google Scholar 

  32. M. Saeed, M. Muneer, M. K. K. Khosa, N. Akram, S. Khalid, M. Adeel, A. Nisar, and S. Sherazi, Green Process. Synth. 8, 659 (2019). https://doi.org/10.1515/gps-2019-0036

    Article  CAS  Google Scholar 

  33. I. K. Konstantinou and T. A. Albanis, Appl. Catal. 49, 1 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  34. M. Shokouhimehr, Catalysts 5, 534 (2015). https://doi.org/10.3390/catal5020534

    Article  CAS  Google Scholar 

  35. Z. B. Shifrina and L. M. Bronstein, Frontiers in Chemistry 6 (2018). https://doi.org/10.3389/fchem.2018.00298

  36. K. M. Reza, A. Kurny, and F. Gulshan, Appl. Water Sci. 7, 1569 (2017). https://doi.org/10.1007/s13201-015-0367-y

    Article  CAS  Google Scholar 

  37. P. C. Nethravathi, KumarM. A. Pavan, D. Suresh, K. Lingaraju, and H. Rajanaika, Mater. Sci. Semicond. Process. 33, 81 (2015). https://doi.org/10.1016/j.mssp.2015.01.034

    Article  CAS  Google Scholar 

  38. G. Manjari, S. Saran, T. Arun, A. Vijaya Bhaskara Rao, and S. P. Devipriya, J. Saudi Chem. 21, 610 (2017). https://doi.org/10.1016/j.jscs.2017.02.004

  39. P. Yugandhar, T. Vasavi, and B. Shanmugam, P. Uma Maheswari Devi, K. Sathyavelu Reddy, and N. Savithramma, Mater. Res. Express 6 (2019). https://doi.org/10.1088/2053-1591/ab0db9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mashentseva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest to be disclosed in this paper.

ADDITIONAL INFORMATION

A.A. Mashentseva ORCID: http://orcid.org/0000-0003-4393-5845

A.T. Zhumazhanova, ORCID: https://orcid.org/0000-0002-5483-9552

N.A. Aimanova, ORCID: https://orcid.org/0000-0002-9150-5877

B.S. Temirgaziev, ORCID: https://orcid.org/0000-0001-6994-3478

B.I. Tyleuov, ORCID: https://orcid.org/0000-0002-7592-9768

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashentseva, A.A., Aimanova, N.A., Temirgaziev, B.S. et al. Photocatalytic Activity of Copper(II) Oxide Nanoparticles Synthesized Using Serratula Coronata L. Extract. Pet. Chem. 60, 1141–1147 (2020). https://doi.org/10.1134/S0965544120100084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120100084

Keywords:

Navigation