Skip to main content
Log in

Transition Metal Phosphides (Ni, Co, Mo, W) for Hydrodeoxygenation of Biorefinery Products (a Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The active use of transition metal phosphides in catalysis commenced at the beginning of the 2000s primarily in hydrodesulfurization and hydrodenitrogenation reactions. Owing to an increased interest in biomass-based feedstocks the intensive use of phosphides in hydrodeoxygenation reactions started in the first part of the 2010s. In earlier reviews devoted to phosphides, which were published before the 2010s, no information pertaining to hydrodeoxygenation is available. This review addresses monometallic phosphides of such transition metals as nickel, cobalt, molybdenum, and tungsten and covers their structure, synthesis, and properties. Transition metal phosphides are promising catalysts for hydroprocesses. They possess both metal active sites and acid sites, and, therefore, demonstrate activity not only in hydrogenation but in a number of acid-catalyzed processes. The review concerns the hydrodeoxygenation reactions of higher fatty acids and their esters; vegetable oils; and bio-oil and its model compounds. The hydrotreatment of vegetable oils and their derivatives over phosphides makes it possible to obtain hydrocarbons, which can be used as diesel fuel components or as a pure fuel. Using the hydrodeoxygenation of bio-oil model compounds catalyzed by phosphides partially or fully deoxygenated products may be obtained; however, the hydrotreatment of bio-oil itself did not provided positive results so far and calls for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. C. I. Rammelsberg, J. Chem. Soc. 26, 1 (1873). https://doi.org/10.1039/js8732600001

    Article  Google Scholar 

  2. R. X. Schenk, J. Chem. Soc. 27, 214 (1874). https://doi.org/10.1039/js8742700214

    Article  Google Scholar 

  3. C. M. W. Grieb and R. Jones, J. Chem. Soc., 2543 (1932). https://doi.org/10.1039/jr9320002543

  4. A. Brenner, D. E. Coucht, and E. K. Williams, J. Res. Natl. Bur. Stand., Sect. A 44, 109 (1950). https://doi.org/10.6028/jres.044.009

    Article  Google Scholar 

  5. N. P. Sweeny, C. S. Rohrer, and O. W. Brown, J. Am. Chem. Soc. 80, 799 (1958). https://doi.org/10.1021/ja01537a012

    Article  CAS  Google Scholar 

  6. E. L. Muetterties and J. C. Sauer, J. Am. Chem. Soc. 96, 3410 (1974).

    Article  CAS  Google Scholar 

  7. F. Nozaki and R. Adachi, J. Catal. 40, 166 (1975). https://doi.org/10.1016/0021-9517(75)90243-2

    Article  CAS  Google Scholar 

  8. F. Nozaki, T. Kitoh, and T. Sodesawa, J. Catal. 62, 286 (1980). https://doi.org/10.1016/0021-9517(80)90457-1

    Article  CAS  Google Scholar 

  9. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, J. Catal. 74, 173 (1982). https://doi.org/10.1016/0021-9517(82)90020-3

    Article  CAS  Google Scholar 

  10. F. Nozaki and M. Tokumi, J. Catal. 79, 207 (1983). https://doi.org/10.1016/0021-9517(83)90304-4

    Article  CAS  Google Scholar 

  11. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, J. Chem. Soc., Faraday Trans. 75, 2027 (1979). https://doi.org/10.1039/f19797502027

    Article  CAS  Google Scholar 

  12. W. R. A. M. Robinson, J. N. M. van Gestel, T. I. Korányi, S. Eijsbouts, A. M. van der Kraan, J. A. R. van Veen, and V. H. J. de Beer, J. Catal. 161, 539 (1996). https://doi.org/10.1006/jcat.1996.0216

    Article  CAS  Google Scholar 

  13. C. Stinner, R. Prins, and T. Weber, J. Catal. 202, 187 (2001). https://doi.org/10.1006/jcat.2001.3283

    Article  CAS  Google Scholar 

  14. S. T. Oyama, X. Wang, Y.-K. Lee, K. Bando, and F. G. Requejo, J. Catal. 210, 207 (2002). https://doi.org/10.1006/jcat.2002.3681

    Article  CAS  Google Scholar 

  15. S. T. Oyama, X. Wang, F. G. Requejo, T. Sato, and Y. Yoshimura, J. Catal. 209, 1 (2002). https://doi.org/10.1006/jcat.2002.3613

    Article  CAS  Google Scholar 

  16. X. Wang, P. Clark, and S. T. Oyama, J. Catal. 208, 321 (2002). https://doi.org/10.1006/jcat.2002.3604

    Article  CAS  Google Scholar 

  17. J. A. Rodriguez, J.-Y. Kim, J. C. Hanson, S. J. Sawhill, and M. E. Bussell, J. Phys. Chem. B, 107, 6276 (2003). https://doi.org/10.1021/jp022639q

    Article  CAS  Google Scholar 

  18. S. J. Sawhill, D. C. Phillips, and M. E. Bussell, J. Catal. 215, 208 (2003). https://doi.org/10.1016/S0021-9517(03)00018-6

    Article  CAS  Google Scholar 

  19. T. I. Korányi, Appl. Catal., A 239, 253 (2003). https://doi.org/10.1016/S0926-860X(02)00390-3

  20. V. Zuzaniuk and R. Prins, J. Catal. 219, 85 (2003). https://doi.org/10.1016/S0021-9517(03)00149-0

    Article  CAS  Google Scholar 

  21. W. Li, B. Dhandapani, and S. T. Oyama, Chem. Lett. 27, 207 (1998). https://doi.org/10.1246/cl.1998.207

    Article  Google Scholar 

  22. C. Stinner, R. Prins, and T. Weber, J. Catal. 191, 438 (2000). https://doi.org/10.1006/jcat.1999.2808

    Article  CAS  Google Scholar 

  23. S. T. Oyama, P. Clark, V. L. S. Teixeira Da Silva, E. J. Lede, and F. G. Requejo, J. Phys. Chem. B 105, 4961 (2001). https://doi.org/10.1021/jp004500q

    Article  CAS  Google Scholar 

  24. D. C. Phillips, S. J. Sawhill, R. Self, and M. E. Bussell, J. Catal. 207, 266 (2002). https://doi.org/10.1006/jcat.2002.3524

    Article  CAS  Google Scholar 

  25. P. Clark, X. Wang, P. Deck, and S. T. Oyama, J. Catal. 210, 116 (2002). https://doi.org/10.1006/jcat.2002.3524

    Article  CAS  Google Scholar 

  26. P. A. Clark and S. T. Oyama, J. Catal. 218, 78 (2003). https://doi.org/10.1016/S0021-9517(03)00086-1

    Article  CAS  Google Scholar 

  27. P. Clark, W. Li, and S. T. Oyama, J. Catal. 200, 140 (2001). https://doi.org/10.1006/jcat.2001.3189

    Article  CAS  Google Scholar 

  28. S. T. Oyama, P. Clark, X. Wang, T. Shido, Y. Iwasawa, S. Hayashi, J. M. Ramallo-López, and F. G. Requejo, J. Phys. Chem. B 106, 19130 (2002). https://doi.org/10.1021/jp0136056

    Article  CAS  Google Scholar 

  29. N. Koike, S. Hosokai, A. Takagaki, S. Nishimura, R. Kikuchi, K. Ebitani, Y. Suzuki, and S. T. Oyama, J. Catal. 333, 115 (2016). https://doi.org/10.1016/j.jcat.2015.10.022

    Article  CAS  Google Scholar 

  30. P. Bui, J. A. Cecilia, S. T. Oyama, A. Takagaki, A. Infantes-Molina, H. Zhao, D. Li, E. Rodríguez-Castellón, A. López, and J. Jimenez, J. Catal. 294, 184 (2012). https://doi.org/10.1016/j.jcat.2012.07.021

    Article  CAS  Google Scholar 

  31. A. Iino, A. Cho, A. Takagaki, R. Kikuchi, S. T. Oyama, J. Catal. 311, 17 (2014). https://doi.org/10.1016/j.jcat.2013.11.002

    Article  CAS  Google Scholar 

  32. V. M. L. Whiffen and K. J. Smith, Energy Fuels 24, 4728 (2010). https://doi.org/10.1021/ef901270h

    Article  CAS  Google Scholar 

  33. K. Li, R. Wang, and J. Chen, Energy Fuels 25, 854 (2011). https://doi.org/10.1021/ef101258j

    Article  CAS  Google Scholar 

  34. H. Y. Zhao, D. Li, P. Bui, and S. T. Oyama, Appl. Catal., A 391, 305 (2011). https://doi.org/10.1021/ef101258j

  35. A. Cho, J. Shin, A. Takagaki, R. Kikuchi, and S. T. Oyama, Top. Catal. 55 P, 969 (2012). https://doi.org/10.1007/s11244-012-9882-3

  36. D. Li, P. Bui, H. Y. Zhao, S. T. Oyama, T. Dou, and Z. H. Shen, J. Catal. 290, 1 (2012). https://doi.org/10.1016/j.jcat.2012.02.001

    Article  CAS  Google Scholar 

  37. Y. Yang, C. Ochoa-Hernández, V. A. de la Peňa O’Shea, J. M. Coronado, and D. P. Serrano, ACS Catal. 2, 592 (2012). https://doi.org/10.1021/cs200659r

    Article  CAS  Google Scholar 

  38. Y. Yang, C. Ochoa-Hernández, P. Pizzaro, V. A. de la Peňa O’Shea, J. M. Coronado, and D. P. Serrano, Top. Catal. 55, 991 (2012). https://doi.org/10.1007/s11244-012-9886-z

    Article  CAS  Google Scholar 

  39. V. M. L. Whiffen, K. J. Smith, and S. K. Straus, Appl. Catal., A 419–420, 111 (2012). https://doi.org/10.1016/j.apcata.2012.01.018

  40. V. M. L. Whiffen and K. J. Smith, Top. Catal. 55, 981 (2012). https://doi.org/10.1007/s11244-012-9883-2

    Article  CAS  Google Scholar 

  41. S. T. Oyama, X. Wang, Y.-K. Lee, and W.-J. Chun, J. Catal. 221, 263 (2004). https://doi.org/10.1016/S0021-9517(03)00017-4

    Article  CAS  Google Scholar 

  42. F. D. Pileidis and M. M. Titirici, ChemSusChem. 9, 562 (2016). https://doi.org/10.1002/cssc.201501405

    Article  CAS  PubMed  Google Scholar 

  43. D. P. Ho, H. H. Ngo, and W. Guo, Bioresour. Technol. 169, 742 (2014). https://doi.org/10.1016/j.biortech.2014.07.022

    Article  CAS  PubMed  Google Scholar 

  44. D. Mohan, C. U. Pittman, and P. H. Steele, Energy Fuels 20, 848 (2006). https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  45. C. A. Mullen and A. A. Boateng, Energy Fuels 22, 2104 (2008). https://doi.org/10.1021/ef700776w

    Article  CAS  Google Scholar 

  46. Q. Zhang, J. Chang, T. Wang, and Y. Xu, Energy Convers. Manage. 48, 87 (2007). https://doi.org/10.1016/j.enconman.2006.05.010

    Article  CAS  Google Scholar 

  47. D. Wang, S. Czernik, D. Montané, M. Mann, and E. Chornet, Ind. Eng. Chem. Res. 36, 1507 (1997). https://doi.org/10.1021/ie960396g

    Article  CAS  Google Scholar 

  48. S. T. Oyama, J. Catal. 216, 343 (2003). https://doi.org/10.1016/S0021-9517(02)00069-6

    Article  CAS  Google Scholar 

  49. S. L. Brock and K. Senevirathne, J. Solid State Chem. 181, 1552 (2008). https://doi.org/10.1016/j.jssc.2008.03.012

    Article  CAS  Google Scholar 

  50. S. T. Oyama, T. Gott, H. Zhao, and Y.-K. Lee, Catal. Today 143, 94 (2009). https://doi.org/10.1016/j.cattod.2008.09.019

    Article  CAS  Google Scholar 

  51. A. M. Alexander and J. S. J. Hargreaves, Chem. Soc. Rev. 39, 4388 (2010). https://doi.org/10.1039/b916787k

    Article  CAS  PubMed  Google Scholar 

  52. R. Prins and M. E. Bussell, Catal. Lett. 142, 1413 (2012). https://doi.org/10.1007/s10562-012-0929-7

    Article  CAS  Google Scholar 

  53. M. E. Bussell, React. Chem. Eng. 2, 628 (2017). https://doi.org/10.1039/c7re00098g

    Article  CAS  Google Scholar 

  54. M. C. Alvarez-Galvan, J. M. Campos-Martin, and J. L. G. Fierro, Catalysts 9, 293 (2019). https://doi.org/10.3390/catal9030293

    Article  CAS  Google Scholar 

  55. J. Ren, J.-G. Wang, J.-F. Li, and Y.-W. Li, J. Fuel Chem. Technol. 35, 458 (2007). https://doi.org/10.1016/S1872-5813(07)60029-2

    Article  CAS  Google Scholar 

  56. B. Winkler, K. Knorr, M. Hytha, V. Milman, V. Soto, and M. Avalos, J. Phys. Chem. Solids 64, 405 (2003). https://doi.org/10.1016/S0022-3697(02)00293-7

    Article  CAS  Google Scholar 

  57. P. Liu, J. A. Rodriguez, and T. Asakura, J. Phys. Chem. B 109, 4575 (2005). https://doi.org/10.1021/jp044301x

    Article  CAS  PubMed  Google Scholar 

  58. Y.-K. Lee and S. T. Oyama, J. Catal. 239, (2006). https://doi.org/10.1016/j.jcat.2005.12.029

  59. M. Peroni, I. Lee, X. Huang, E. Barath, O. Y. Gutierrez, and J. A. Lercher, ACS Catal. 7, 6331 (2017). https://doi.org/10.1021/acscatal.7b01294

    Article  CAS  Google Scholar 

  60. Q. Guan, W. Li, M. Zhang, and K. Tao, J. Catal. 263, 1 (2009). https://doi.org/10.1016/j.jcat.2009.02.008

    Article  CAS  Google Scholar 

  61. Q. Guan and W. Li, J. Catal. 271, 413 (2010). https://doi.org/10.1016/j.jcat.2010.02.031

    Article  CAS  Google Scholar 

  62. Y. Shu, Y.-K. Lee, and S. T. Oyama, J. Catal. 236, 112 (2005). https://doi.org/10.1016/j.jcat.2005.08.015

    Article  CAS  Google Scholar 

  63. X. Liu, J. Chen, and J. Zhang, Catal. Commun. 8, 1905 (2007). https://doi.org/10.1016/j.catcom.2007.03.008

    Article  CAS  Google Scholar 

  64. S. J. Sawhill, K. A. Layman, D. R. Van Wyk, M. H. Engelhard, C. Wang, an M. E. Bussell, J. Catal. 231, 300 (2005). https://doi.org/10.1016/j.jcat.2005.01.020

    Article  CAS  Google Scholar 

  65. T. Kawai, K. K. Bando, Y.-K. Lee, S. T. Oyama, W.-J. Chun, and K. Asakura, J. Catal. 241, 20 (2006). https://doi.org/10.1016/j.jcat.2006.03.024

    Article  CAS  Google Scholar 

  66. C. Stinner, Z. Tang, M. Haouas, T. Weber, and R. Prins, J. Catal. 208, 456 (2002). https://doi.org/10.1006/jcat.2002.3577

    Article  CAS  Google Scholar 

  67. S. Yang, C. Liang, and R. Prins, J. Catal. 241, 465 (2006). https://doi.org/10.1016/j.jcat.2006.05.014

    Article  CAS  Google Scholar 

  68. D. Ma, T. Xiao, S. Xie, W. Zhou, S. L. Gonzalez-Cortes, and M. L. H. Green, Chem. Mater. 16, 2697 (2004). https://doi.org/10.1021/cm035233e

    Article  CAS  Google Scholar 

  69. R. Wang and K. J. Smith, Appl. Catal., A 361, 18 (2009). https://doi.org/10.1016/j.apcata.2009.03.037

  70. S. Izhar and M. Nagai, Catal. Today 146, 172 (2009). https://doi.org/10.1016/j.cattod.2009.01.036

    Article  CAS  Google Scholar 

  71. A. W. Burns, K. A. Layman, D. H. Bale, and M. E. Bussell, Appl. Catal., A 343, 68 (2008). https://doi.org/10.1016/j.apcata.2008.03.022

  72. R. Cheng, Y. Shu, L. Li, M. Zheng, X. Wang, A. Wang, and T. Zhang, Appl. Catal., A 316, 160 (2007). https://doi.org/10.1016/j.apcata.2006.08.036

  73. B. Ibeh, S. Zhang, and J. M. Hill, Appl. Catal., A 368, 127 (2009). https://doi.org/10.1016/j.apcata.2009.08.017

  74. G. Sun, C. Li, Z. Zhou, and F. Li, Front. Chem. Eng. China 2, 155 (2008). https://doi.org/10.1007/s11705-008-0038-8

    Article  CAS  Google Scholar 

  75. J. A. Cecilia, A. Infantes-Molina, E. Rodríguez-Castellón, and A. Jimenez-López, J. Catal. 263, 4 (2009). https://doi.org/10.1016/j.jcat.2009.02.013

    Article  CAS  Google Scholar 

  76. I. V. Shamanaev, I. V. Deliy, P. V. Aleksandrov, E. Y. Gerasimov, V. P. Pakharukova, E. G. Kodenev, A. B. Ayupov, A. S. Andreev, O. B. Lapina, and G. A. Bukhtiyarova, RSC Adv. 6, 30372 (2016). https://doi.org/10.1039/c6ra01171c

  77. X. Lan, E. J. M. Hensen, and T. Weber, Appl. Catal., A 550, 57 (2018). https://doi.org/10.1016/j.apcata.2017.10.018

  78. J. A. Cecilia, A. Infantes-Molina, E. Rodríguez-Castellón, and A. Jimenez-López, Appl. Catal., B 92, 100 (2009). https://doi.org/10.1016/j.apcatb.2009.07.017

    Article  CAS  Google Scholar 

  79. G. Shi and J. Shen, J. Mater. Chem. 19, 2295 (2009). https://doi.org/10.1039/b903088n

    Article  CAS  Google Scholar 

  80. L. Song and S. Zhang, Powder Technol. 208, 713 (2011). https://doi.org/10.1016/j.powtec.2011.01.014

    Article  CAS  Google Scholar 

  81. D. Liu, A. Wang, C. Liu, and R. Prins, Catal. Commun. 77, 13 (2016). https://doi.org/10.1016/j.catcom.2016.01.008

    Article  CAS  Google Scholar 

  82. H. Song, M. Dai, H. Song, X. Wan, and X. Xu, Appl. Catal., A 462–463, 247 (2013). https://doi.org/10.1016/j.catcom.2016.01.008

  83. A. I. d’Aquino, S. J. Danforth, T. R. Clinkingbeard, B. Ilic, L. Pullan, M. A. Reynolds, B. D. Murray, and M. E. Bussell, J. Catal. 335, 204 (2016). https://doi.org/10.1016/j.catcom.2016.01.008

    Article  CAS  Google Scholar 

  84. A. Sun, K. Lv, D. Wang, and Z. Wu, Appl. Surf. Sci. 493, 740 (2019). https://doi.org/10.1016/j.apsusc.2019.07.074

    Article  CAS  Google Scholar 

  85. Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu, and C. Liu, J. Mater. Chem. A 3, 1656 (2015). https://doi.org/10.1016/j.apsusc.2019.07.074

    Article  CAS  Google Scholar 

  86. Y. Pan, W. Hu, D. Liu, Y. Liu, and C. Liu, J. Mater. Chem. A 3, 13087 (2015). https://doi.org/10.1039/c5ta02128f

    Article  CAS  Google Scholar 

  87. Y. Pan, Y. Liu, and C. Liu, J. Power Sources 285, (2015). https://doi.org/10.1016/j.jpowsour.2015.03.097

  88. Y. Pan, N. Yang, Y. Chen, Y. Lin, Y. Li, Y. Liu, and C. Liu, J. Power Sources 297, 45 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.077

    Article  CAS  Google Scholar 

  89. J. Wang, A. C. Johnston-Peck, and J. B. Tracy, Chem. Mater. 21, 4462 (2009). https://doi.org/10.1021/cm901073k

    Article  CAS  Google Scholar 

  90. A. E. Henkes, Y. Vasquez, and R. E. Schaak, J. Am. Chem. Soc. 129, 1896 (2007). https://doi.org/10.1021/cm901073k

    Article  CAS  PubMed  Google Scholar 

  91. R.-K. Chiang and R.-T. Chiang, Inorg. Chem. 46, 369 (2007). https://doi.org/10.1021/ic061846s

    Article  CAS  PubMed  Google Scholar 

  92. A. E. Henkes and R. E. Schaak, Chem. Mater. 19, 4234 https://doi.org/10.1021/cm071021w

  93. B. Sajjadi, A. A. A. Raman, and H. Arandiyan, Renewable Sustainable Energy Rev. 63, 62 (2016). https://doi.org/10.1016/j.rser.2016.05.035

    Article  CAS  Google Scholar 

  94. T. Kalnes, T. Marker, and D. R. Shonnard, Int. J. Chem. React. Eng. 5 (2007). https://doi.org/10.2202/1542-6580.1554

  95. W. Zhou, H. Xin, H. Yang, X. Du, R. Yang, D. Li, and C. Hu, Catalysts 8, 153 (2018). https://doi.org/10.3390/catal8040153

    Article  CAS  Google Scholar 

  96. M. C. Alvarez-Galvan, G. Blanco-Brieva, M. Capel-Sanchez, S. Morales-DelaRosa, J. M. Campos-Martin, and J. L. G. Fierro, Catal. Today 302, 242 (2018). https://doi.org/10.1016/j.cattod.2017.03.031

    Article  CAS  Google Scholar 

  97. J. Chen, H. Shi, L. Li, and K. Li, Appl. Catal., B 144, 870 (2014). https://doi.org/10.1016/j.apcatb.2013.08.026

    Article  CAS  Google Scholar 

  98. S. Zhao, Z. Zhang, K. Zhu, and J. Chen, Appl. Surf. Sci. 404, 388 (2017). https://doi.org/10.1016/j.apsusc.2017.02.016

    Article  CAS  Google Scholar 

  99. J. Chen, Y. Yang, H. Shi, M. Li, Y. Chu, Z. Pan, and X. Yu, Fuel 129, 1 (2014). https://doi.org/10.1016/j.fuel.2014.03.049

    Article  CAS  Google Scholar 

  100. Z. Pan, R. Wang, M. Li, Y. Chu, and J. Chen, J. Energy Chem. 24, 77 (2015). https://doi.org/10.1016/S2095-4956(15)60287-X

    Article  Google Scholar 

  101. H. Shi, J. Chen, Y. Yang, and S. Tian, Fuel Process. Technol. 118, 161 (2014). https://doi.org/10.1016/j.fuproc.2013.08.010

    Article  CAS  Google Scholar 

  102. Z. Zhang, M. Tang, and J. Chen, Appl. Surf. Sci. 360, 353 (2016). https://doi.org/10.1016/j.apsusc.2015.10.182

    Article  CAS  Google Scholar 

  103. Z. Pan, R. Wang, Z. Nie, and J. Chen, J. Energy Chem. 25, 418 (2016). https://doi.org/10.1016/j.jechem.2016.02.007

    Article  Google Scholar 

  104. Y. Yang, J. Chen, and H. Shi, Energy Fuels 27, 3400 (2013). https://doi.org/10.1021/ef4004895

    Article  CAS  Google Scholar 

  105. Z. Zheng, M. -F. Li, Y. Chu, and J.-X. Chen, Fuel Process. Technol. 134, 259 (2015). https://doi.org/10.1016/j.fuproc.2015.02.002

    Article  CAS  Google Scholar 

  106. J. Chen, M. Han, S. Zhao, Z. Pan, and Z. Zhang, Catal. Sci. Technol. 6, 3938 (2016). https://doi.org/10.1016/10.1039/c5cy01751c

    Article  CAS  Google Scholar 

  107. Z. Nie, Z. Zhang, and J. Chen, Appl. Surf. Sci. 420, 511 (2017). https://doi.org/10.1016/j.apsusc.2017.05.173

    Article  CAS  Google Scholar 

  108. F. Han, Q. Guan, and W. Li, RSC Adv. 5, 107533 (2015). https://doi.org/10.1039/c5ra22973a

  109. Q. Guan, F. Han, and W. Li, RSC Adv. 6, 31308 (2016). https://doi.org/10.1039/c6ra02601j

  110. I. V. Deliy, I. V. Shamanaev, E. Y. Gerasimov, V. P. Pakharukova, I. V. Yakovlev, O. B. Lapina, P. V. Aleksandrov, G. A. Bukhtiyarova, Catalysts 7, 298 (2017). https://doi.org/10.3390/catal7100298

    Article  CAS  Google Scholar 

  111. Q. Guan, F. Wan, F. Han, Z. Liu, and W. Li, Catal. Today 259, 467 (2016). https://doi.org/10.1016/j.cattod.2015.03.010

    Article  CAS  Google Scholar 

  112. I. V. Shamanaev, I. V. Deliy, E. Y. Gerasimov, V. P. Pakharukova, E. G. Kodenev, P. V. Aleksandrov, and G. A. Bukhtiyarova, Catalysts 7, 329 (2017). https://doi.org/10.3390/catal7110329

    Article  CAS  Google Scholar 

  113. I. V. Deliy, I. V. Shamanaev, P. V. Aleksandrov, E. Y. Gerasimov, V. P. Pakharukova, E. G. Kodenev, I. V. Yakovlev, O. B. Lapina, and G. A. Bukhtiyarova, Catalysts 8, 515 (2018). https://doi.org/10.3390/catal8110515

    Article  CAS  Google Scholar 

  114. I. V. Shamanaev, I. V. Deliy, P. V. Aleksandrov, S. I. Reshetnikov, and G. A. Bukhtiyarova, J. Chem. Technol. Biotechnol. 94, 3007 (2019). https://doi.org/10.1002/jctb.6111

    Article  CAS  Google Scholar 

  115. I. V. Shamanaev, I. V. Deliy, V. P. Pakharukova, E. Y. Gerasimov, V. A. Rogov, and G. A. Bukhtiyarova, Russ. Chem. Bull. 64, 2361 (2015). https://doi.org/10.1007/s11172-015-1164-3]

    Article  CAS  Google Scholar 

  116. I. V. Shamanaev, I. V. Deliy, E. Y. Gerasimov, V. P. Pakharukova, and G. A. Bukhtiyarova, Catalysts 10, 45 (2020). https://doi.org/10.3390/catal10010045

    Article  CAS  Google Scholar 

  117. Y. Xue, Q. Guan, and W. Li, RSC Adv. 5, (2015). https://doi.org/10.3390/catal10010045

  118. M. Lu, L. Zheng, R. Li, Q. Guan, and W. Li, RSC Adv. 6, 65081 (2016). https://doi.org/10.1039/c6ra09862b

  119. Y. Yang, C. Ochoa-Hernandez, P. Pizarro, de la Peña O’Shea, J. M. Coronado, and D. P. Serrano, Fuel 144, 60 (2015). https://doi.org/10.1016/j.fuel.2014.12.008

    Article  CAS  Google Scholar 

  120. C. Liu, H. Yang, Z. Jing, K. Xi, and C. Qiao, J. Fuel Chem. Technol. 44, 1211 (2016). https://doi.org/10.1016/S1872-5813(16)30052-4

    Article  CAS  Google Scholar 

  121. Y. Yang, C. Ochoa-Hernández, V. A. de la Peña O’Shea, P. Pizarro, J. M. Coronado, and D. P. Serrano, J. Nanosci. Nanotechnol. 15, 6642 (2015). https://doi.org/10.1166/jnn.2015.10869

    Article  CAS  PubMed  Google Scholar 

  122. M. A. Golubeva and A. L. Maksimov Pet. Chem. 59, 1326 (2019). https://doi.org/10.1134/S0965544119120041

    Article  CAS  Google Scholar 

  123. H. Xin, K. Guo, D. Li, H. Yang, and C. Hu, Appl. Catal., B 187, 375 (2016). https://doi.org/10.1016/j.apcatb.2016.01.051

    Article  CAS  Google Scholar 

  124. Y. Liu, L. Yao, H. Xin, G. Wang, D. Li, and C. Hu, Appl. Catal., B 174–175, 504 (2015). https://doi.org/10.1016/j.apcatb.2015.03.023

  125. H. Xin, W. Zhou, K. Zhou, X. Du, D. Li, and C. Hu, Catal. Today 319, 182 (2019). https://doi.org/10.1016/j.cattod.2018.03.051

    Article  CAS  Google Scholar 

  126. M. Peroni, G. Mancino, E. Barath, O. Y. Gutiérrez, and J. A. Lercher, Appl. Catal., B 180, 301 (2016). https://doi.org/10.1016/j.apcatb.2015.06.042

    Article  CAS  Google Scholar 

  127. Z. Zhang, G. Bi, H. Zhang, A. Zhang, X. Li, and J. Xie, Fuel 247, 26 (2019). https://doi.org/10.1016/j.fuel.2019.03.021

    Article  CAS  Google Scholar 

  128. L. F. Feitosa, G. Berhault, and D. Laurenti, and V. Teixeira da Silva, Ind. Eng. Chem. Res. 58, 16164 (2019). https://doi.org/10.1021/acs.iecr.9b00491

    Article  CAS  Google Scholar 

  129. S. Gutiérrez-Rubio, A. Berenguer, J. Přech, M. Opanasenko, C. Ochoa-Hernández, P. Pizarro, J. Čejka, D. P. Serrano, J. M. Coronado, and I. Moreno, Catal. Today 345, (2019). https://doi.org/10.1016/j.cattod.2019.11.015

  130. M. B. Griffin, F. G. Baddour, S. E. Habas, D. A. Ruddy, and J. A. Schaidle, Top. Catal. 59, 124 (2016). https://doi.org/10.1007/s11244-015-0512-8

    Article  CAS  Google Scholar 

  131. S. T. Oyama, T. Onkawa, A. Takagaki, R. Kikuchi, S. Hosokai, Y. Suzuki, and K. K. Bando, Top. Catal. 58, 201 (2015). https://doi.org/10.1007/s11244-015-0361-5

    Article  CAS  Google Scholar 

  132. Y. Li, J. Fu, and B. Chen, RSC Adv. 7, 15272 (2017). https://doi.org/10.1039/c7ra00989e

  133. S. K. Wu, P. C. Lai, and Y. C. Lin, Catal. Lett. 144, 878 (2014). https://doi.org/10.1007/s10562-014-1231-7

    Article  CAS  Google Scholar 

  134. L. F. Feitosa, G. Berhault, D. Laurenti, and T. E. Davies, and V. Teixeira da Silva, J. Catal. 340, 154 (2016). https://doi.org/10.1016/j.jcat.2016.05.016

    Article  CAS  Google Scholar 

  135. P. Zhang, Y. Sun, M. Lu, J. Zhu, M. Li, Y. Shan, J. Shen, and C. Song, Energy Fuels 33, 7696 (2019). https://doi.org/10.1016/j.jcat.2016.05.016

    Article  CAS  Google Scholar 

  136. M. A. Golubeva and A. L. Maximov, Mendeleev Commun. 29, 550 (2019). https://doi.org/10.1016/j.jcat.2016.05.016

    Article  CAS  Google Scholar 

  137. S. K. Wu, P. C. Lai, Y. C. Lin, H.-P. Wan, H.-T. Lee, and Y.-H. Chang, ACS Sustainable Chem. Eng. 1, 349 (2013). https://doi.org/10.1021/sc300157d

    Article  CAS  Google Scholar 

  138. J.-S. Moon and Y.-K. Lee, Top. Catal. 58, 211 (2015). https://doi.org/10.1007/s11244-015-0362-4

    Article  CAS  Google Scholar 

  139. J.-S. Moon, E.-G. Kim, and Y.-K. Lee, J. Catal. 311, 144 (2014). https://doi.org/10.1007/s11244-015-0362-4

    Article  CAS  Google Scholar 

  140. S. Gutiérrez-Rubio, I. Moreno, D. P. Serrano, and J. M. Coronado, ACS Omega 4, 21516 (2019). https://doi.org/10.1021/acsomega.9b03221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. P. M. De Souza, C. V. M. Inocéncio, V. I. Perez, R. C. Rabelo-Neto, V. O. O. Goncalves, G. Jacobs, F. Richard, V. Teixeira da Silva, and F. B. Noronha, Catal. Today (2019). https://doi.org/10.1016/j.cattod.2019.08.028

  142. A. Berenguer, T. M. Sankaranarayanan, G. Gómez, I. Moreno, J. M. Coronado, P. Pizarro, and D. P. Serrano, Green Chem. 18, 1938 (2016). https://doi.org/10.1039/c5gc02188j

    Article  CAS  Google Scholar 

  143. A. Berenguer, S. Gutiérrez-Rubio, M. Linares, C. Ochoa-Hernández, I. Moreno, J. L. García-Fierro, J. M. Coronado, D. P. Serrano, and P. Pizarro, Energy Technol. 7, 1900214 (2019). https://doi.org/10.1002/ente.201900214

    Article  CAS  Google Scholar 

  144. Y. Li, X. Zhang, H. Zhang, B. Chen, and K. J. Smith, J. Taiwan Inst. Chem. Eng. 80, 215 (2017). https://doi.org/10.1016/j.jtice.2017.06.053

    Article  CAS  Google Scholar 

  145. Z. Yu, Y. Wang, S. Liu, Y. Yao, Z. Sun, X. Li, Y.-Y. Liu, W. Wang, A. Wang, D. M. Camaioni, and J. A. Lercher, Ind. Eng. Chem. Res. 57, 10216 (2018). https://doi.org/10.1021/acs.iecr.8b01606

    Article  CAS  Google Scholar 

  146. Z. Yu, Y. Wang, Z. Sun, X. Li, A. Wang, D. M. Camaioni, and J. A. Lercher, Green Chem. 20, 609 (2018). https://doi.org/10.1039/c7gc03262e

    Article  CAS  Google Scholar 

  147. Y. Li, X. Yang, L. Zhu, H. Zhang, and B. Chen, RSC Adv. 5, 80388 (2015). https://doi.org/10.1039/c5ra11203f

  148. Z. Yu, A. Wang, S. Liu, Y. Yao, Z. Sun, X. Li, Y. Liu, Y. Wang, D. M. Camaioni, and J. A. Lercher, Catal. Today 319, 48 (2019). https://doi.org/10.1039/c5ra11203f

    Article  CAS  Google Scholar 

  149. E. Rodríguez-Aguado, A. Infantes-Molina, D. Ballesteros-Plata, J. A. Cecilia, I. Barroso-Martin, and E. Rodríguez-Castellón, Mol. Catal. 437, 130 (2017). https://doi.org/10.1016/j.mcat.2017.05.008

    Article  CAS  Google Scholar 

  150. K. Yan, Y. Li, X. Zhang, X. Yang, N. Zhang, J. Zheng, B. Chen, and K. J. Smith, Int. J. Hydrogen Energy 40, 16137 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.145

    Article  CAS  Google Scholar 

  151. S. Boullosa-Eiras, R. Lødeng, H. Bergem, M. Stöcker, L. Hannevold, and E. A. Blekkan, Catal. Today 223, 44 (2014). https://doi.org/10.1016/j.cattod.2013.09.044

    Article  CAS  Google Scholar 

  152. E. Rodríguez-Aguado, A. Infantes-Molina, J. A. Cecilia, D. Ballesteros-Plata, R. López-Olmo, and E. Rodríguez-Castellón, Top. Catal. 60, 1094 (2017). https://doi.org/10.1007/s11244-017-0791-3

    Article  CAS  Google Scholar 

  153. Y. Li, Y. Zhao, B. Chen, and W. Wang, ChemCatChem. 10, 2612 (2018). https://doi.org/10.1002/cctc.201800010

    Article  CAS  Google Scholar 

  154. A. Berenguer, J. A. Bennett, J. Hunns, I. Moreno, J. M. Coronado, A. F. Lee, P. Pizarro, K. Wilson, and D. P. Serrano, Catal. Today 304, 72 (2018). https://doi.org/10.1016/j.cattod.2017.08.032

    Article  CAS  Google Scholar 

  155. V. O. O. Goncalves, P. M. de Souza, and T. Cabioc’h, V. Teixeira da Silva, F.B. Noronha, and F. Richard, Appl. Catal., B 219, 619 (2017). https://doi.org/10.1016/j.apcatb.2017.07.042

    Article  CAS  Google Scholar 

  156. V. O. O. Goncalves and P. M. de Souza, V. Teixeira da Silva, F. B. Noronha, and F. Richard, Appl. Catal., B 205, 357 (2017). https://doi.org/10.1016/j.apcatb.2016.12.051

    Article  CAS  Google Scholar 

  157. W. Wang, K. Zhang, H. Liu, Z. Qiao, Y. Yang, and K. Ren, Catal. Commun. 41, 41 (2013). https://doi.org/10.1016/j.catcom.2013.07.003

    Article  CAS  Google Scholar 

  158. L. Pan, Y. He, M. Niu, Y. Dan, and W. Li, J. Mater. Sci. 55, 1614 (2020). https://doi.org/10.1007/s10853-019-04037-y

    Article  CAS  Google Scholar 

  159. V. O. O. Goncalves, P. M. de Souza, and T. Cabioc’h, V. Teixeira da Silva, Noronha F. B., and F. Richard, Catal. Commun. 119, 33 (2019). https://doi.org/10.1007/s10853-019-04037-y

    Article  CAS  Google Scholar 

  160. L. Xia, Z. Xia, W. Tang, H. Wang, and M. Fang, Adv. Mat. Res. 864–867, 366 (2014). https://doi.org/10.4028/www.scientific.net/AMR.864-867.366

    Article  CAS  Google Scholar 

  161. P.-J. Hsu and Y.-C. Lin, J. Taiwan Inst. Chem. Eng. 79, 80–87 (2017). https://doi.org/10.1016/j.jtice.2017.02.020

    Article  CAS  Google Scholar 

  162. S. C. Shit, P. Koley, B. Joseph, C. Marini, L. Nakka, J. Tardio, and J. Mondal, ACS Appl. Mater. Interfaces 11, 24140 (2019). https://doi.org/10.1021/acsami.9b06789

    Article  CAS  PubMed  Google Scholar 

  163. J. Qi, S.-F. Tang, Y. Sun, C. Xu, and X. Li, ChemistrySelect. 2, 7525 (2017). https://doi.org/10.1002/slct.201701391

    Article  CAS  Google Scholar 

  164. S.-P. Lee and Y.-W. Chen, Ind. Eng. Chem. Res. 38, 2548 (1999). https://doi.org/10.1021/ie990071a

    Article  CAS  Google Scholar 

  165. C. P. Jiménez-Gómez, J. A. Cecilia, R. Moreno-Tost, and P. Maireles-Torres, ChemCatChem. 9, 2881 (2017). https://doi.org/10.1002/cctc.201700312

    Article  CAS  Google Scholar 

  166. Y. Wang, F. Liu, H. Han, L. Xiao, and W. Wu, ChemistrySelect 3, 7926 (2018). https://doi.org/10.1002/slct.201800929

    Article  CAS  Google Scholar 

  167. Y. Wang, X. Feng, S. Yang, L. Xiao, and W. Wu, J. Nanopart. Res. 22 (2020). https://doi.org/10.1007/s11051-020-04784-z

  168. A. Iino, A. Takagaki, R. Kikuchi, S. T. Oyama, and K. K. Bando, J. Phys. Chem. C 123, 7633 (2019). https://doi.org/10.1021/acs.jpcc.8b03246

    Article  CAS  Google Scholar 

  169. P. P. Bui, S. T. Oyama, A. Takagaki, B. P. Carrow, and K. Nozaki, ACS Catal. 6, 4549 (2016). https://doi.org/10.1021/acscatal.6b01033

    Article  CAS  Google Scholar 

  170. A. Cho, H. Kim, A. Iino, A. Takagaki, and S. T. Oyama, J. Catal. 318, 151 (2014). https://doi.org/10.1021/acscatal.6b01033

    Article  CAS  Google Scholar 

  171. A. Cho, A. Takagaki, R. Kikuchi, and S. T. Oyama, Top. Catal. 58, 219 (2015). https://doi.org/10.1007/s11244-015-0363-3

    Article  CAS  Google Scholar 

  172. J. Zhang, K. Matsubara, G.-N. Yun, H. Zheng, A. Takagaki, R. Kikuchi, and S. T. Oyama, Appl. Catal., A 548, 39 (2017). https://doi.org/10.1016/j.apcata.2017.06.009

  173. G.-N. Yun, A. Takagaki, R. Kikuchi, and S. T. Oyama, Catal. Sci. Technol. 7, 281 (2017). https://doi.org/10.1039/c6cy02252a

    Article  CAS  Google Scholar 

  174. G.-N. Yun, S.-J. Ahn, A. Takagaki, R. Kikuchi, and S. T. Oyama, J. Catal. 353, 141 (2017). https://doi.org/10.1016/j.jcat.2017.07.006

    Article  CAS  Google Scholar 

  175. G.-N. Yun, S.-J. Ahn, A. Takagaki, R. Kikuchi, and S. T. Oyama, Catal. Today 323, 54 (2019). https://doi.org/10.1016/j.cattod.2018.07.054

    Article  CAS  Google Scholar 

  176. G.-N. Yun, I. T. Ghampson, W. T. Movick, V. Vargheese, Y. Kobayashi, and S. T. Oyama, Chem. Eng. Sci. 223, 115697 (2020). https://doi.org/10.1016/j.ces.2020.115697

    Article  CAS  Google Scholar 

  177. Z. Yu, F. Meng, Y. Wang, Z. Sun, Y. Liu, C. Shi, W. Wang, and A. Wang, Ind. Eng. Chem. Res. 59, 7416 (2020). https://doi.org/10.1021/acs.iecr.0c00257

    Article  CAS  Google Scholar 

  178. M. Mavrikakis and M. A. Barteau, J. Mol. Catal. A: Chem. 131, 135 (1998). https://doi.org/10.1016/s1381-1169(97)00261-6

    Article  CAS  Google Scholar 

  179. S. Sitthisa and D. E. Resasco, Catal. Lett. 141, 784 (2011). https://doi.org/10.1007/s10562-011-0581-7

    Article  CAS  Google Scholar 

  180. S. Liu, Q. Zhu, Q. Guan, L. He, and W. Li, Bioresour. Technol. 183, 93 (2015). https://doi.org/10.1007/s10562-011-0581-7

    Article  CAS  PubMed  Google Scholar 

  181. R. Zarchin, M. Rabaev, R. Vidruk-Nehemya, M. V. Landau, and M. Herskowitz, Fuel 139, 684 (2015). https://doi.org/10.1016/j.fuel.2014.09.053

    Article  CAS  Google Scholar 

  182. S. Phimsen, W. Kiatkittipong, H. Yamada, T. Tagawa, K. Kiatkittipong, N. Laosiripojana, and S. Assabumrungrat, Energ. Convers. Manage. 151, 324 (2017). https://doi.org/10.1016/j.enconman.2017.08.089

    Article  CAS  Google Scholar 

  183. L. K. H. Pham, T. T. V. Tran, S. Kongparakul, P. Reubroycharoen, S. Karnjanakom, G. Guan, and C. Samart, Fuel Process. Technol. 185, 117 (2019). https://doi.org/10.1016/j.fuproc.2018.12.009

    Article  CAS  Google Scholar 

  184. S. Rakmae, N. Osakoo, M. Pimsuta, K. Deekamwong, C. Keawkumay, T. Butburee, K. Faungnawakij, C. Geantet, S. Prayoonpokarach, J. Wittayakun, and P. Khemthong, Fuel Process. Technol. 198, 106236 (2020). https://doi.org/10.1016/j.fuproc.2019.106236

    Article  CAS  Google Scholar 

  185. J. Horáček, U. Akhmetzyanova, L. Skuhrovcová, Z. Tišler, and H. de Paz Carmona, Appl. Catal., B 263, 118328 (2020). https://doi.org/10.1016/j.apcatb.2019.118328

    Article  CAS  Google Scholar 

  186. C. Guo, K. Tirumala Venkateswara Rao, E. Reyhanitash, Z. Yuan, S. Rohani, C. Xu, and S. He, AIChE J. 62, 3664 (2016). https://doi.org/10.1002/aic.15286

    Article  CAS  Google Scholar 

  187. C. Guo, K. Tirumala Venkateswara Rao, Z. Yuan, S. He, S. Rohani, and C. Xu, Chem. Eng. Sci. 178, 248 (2018). https://doi.org/10.1016/j.ces.2017.12.048

    Article  CAS  Google Scholar 

  188. F. Mendes Leal, V. Teixeira Da Silva, M. Edral Pacheco, F. S. Toniolo, and C. Assumpcão Henriques, Fuel 241, 686 (2019). https://doi.org/10.1016/j.fuel.2018.12.063

    Article  CAS  Google Scholar 

  189. F. Leal Mendes, V. Teixeira da Silva, M. Edral Pacheco, A. Pinho de Rezende, and C. Assumpcão Henriques, Fuel 264, 116764 (2020). https://doi.org/10.1016/j.fuel.2019.116764

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the State Program of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (TIPS RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Golubeva.

Ethics declarations

CONFLICT OF INTEREST

A.L. Maximov is the editor-in-chief of the journal Petroleum Chemistry; other authors declare that there is no conflict of interest to be disclosed in this paper.

ADDITIONAL INFORMATION

M.A. Golubeva, ORCID: http://orcid.org/0000-0002-3741-7833

E.M. Zakharyan, ORCID: http://orcid.org/0000-0001-8850-2141

A.L. Maximov, ORCID: http://orcid.org/0000-0001-9297-4950

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, M.A., Zakharyan, E.M. & Maximov, A.L. Transition Metal Phosphides (Ni, Co, Mo, W) for Hydrodeoxygenation of Biorefinery Products (a Review). Pet. Chem. 60, 1109–1128 (2020). https://doi.org/10.1134/S0965544120100047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120100047

Keywords:

Navigation