Skip to main content
Log in

Growth of a Ge Layer on a Si/SiO2/Si(100) Structure by the Hot Wire Chemical Vapor Deposition

  • XXIV INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 10–13, 2020
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Ge/Si layers are formed on Si/SiO2/Si(100) substrates and are investigated for different growth temperatures. The Si layer is grown by molecular-beam epitaxy, while the Ge layer is produced by the hot wire chemical vapor deposition. Structural studies are carried out using high-resolution transmission electron microscopy and reflection high-energy electron diffraction. Such structures are promising for the growth of high-quality light-emitting structures on them, which are compatible with silicon radiation-resistant integrated circuits. It is shown that a single-crystal Ge layer can be grown on Si/SiO2/Si(100) via a Si buffer layer by the hot wire chemical vapor deposition, and the difficulties arising during the growth of Ge/Si layers on Si/SiO2/Si(100) are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. A. Sushkov, D. A. Pavlov, V. G. Shengurov, C. A. Denisov, V. Yu. Chalkov, N. V. Baidus, A. V. Rykov, and R. N. Kryukov, Semiconductors 53, 1242 (2019).

    Article  ADS  Google Scholar 

  2. G. K. Celler and S. Cristoloveanu, J. Appl. Phys. 93, 4955 (2003).

    Article  ADS  Google Scholar 

  3. J. R. Schwank, V. Ferlet-Cavrois, M. R. Shaneyfelt, P. Paillet, and P. E. Dodd, IEEE Trans. Nucl. Sci. 50, 522 (2003).

    Article  ADS  Google Scholar 

  4. M. Gaillardin, M. Raine, P. Paillet, M. Martinez, C. Marcandella, S. Girard, O. Duhamel, N. Richard, F. Andrieu, S. Barraud, and O. Faynot, in Proceedings of the IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference IEEE S3S, Monterey, CA,2013, p. 1.

  5. P. Roche, J. Autran, G. Gasiot, and D. Munteanu, in Proceedings of the 2013 IEEE International Electron Devices Meeting (Washington, DC, 2013), p. 31.1.1.

  6. Yu. B. Bolkhovityanov and O. P. Pchelyakov, Phys. Usp. 51, 437 (2008).

    Article  ADS  Google Scholar 

  7. N. Baidus, V. Aleshkin, A. Dubinov, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, M. Shaleev, P. Yunin, D. Yurasov, and Z. Krasilnik, Crystals 8, 311 (2018).

    Article  Google Scholar 

  8. V. Ya. Aleshkin, N. V. Baidus, A. A. Dubinov, A. G. Fefelov, Z. F. Krasilnik, K. E. Kudryavtsev, S. M. Nekorkin, A. V. Novikov, D. A. Pavlov, I. V. Samartsev, E. V. Skorokhodov, M. V. Shaleev, A. A. Sushkov, A. N. Yablonskiy, P. A. Yunin, and D. V. Yurasov, Appl. Phys. Lett. 109, 061111 (2016).

    Article  ADS  Google Scholar 

  9. N. V. Baidus, V. Ya. Aleshkin, A. A. Dubinov, K. E. Kudryavtsev, S. M. Nekorkin, A. V. Novikov, D. A. Pavlov, A. V. Rykov, A. A. Sushkov, M. V. Shaleev, P. A. Yunin, D. V. Yurasov, A. N. Yablonskiy, and Z. F. Krasilnik, Semiconductors 51, 1527 (2017).

    Article  ADS  Google Scholar 

  10. S. A. Denisov, S. A. Matveev, V. Yu. Chalkov, and V. G. Shengurov, J. Phys.: Conf. Ser. 690, 012014 (2016).

    Google Scholar 

  11. Yu. N. Buzynin, V. G. Shengurov, B. N. Zvonkov, A. N. Buzynin, S. A. Denisov, N. V. Baidus, M. N. Drozdov, D. A. Pavlov, and P. A. Yunin, AIP Adv. 7, 015304 (2017).

    Article  ADS  Google Scholar 

  12. N. V. Kryzhanovskaya, E. I. Moiseev, Yu. S. Polubavkina, M. V. Maximov, M. M. Kulagina, S. I. Troshkov, Yu. M. Zadiranov, A. A. Lipovskii, N. V. Baidus, A. A. Dubinov, Z. F. Krasilnik, A. V. Novikov, D. A. Pavlov, A. V. Rykov, A. A. Sushkov, D. V. Yurasov, and A. E. Zhukov, Opt. Express 25, 16754 (2017).

    Article  ADS  Google Scholar 

  13. S. A. Matveev, S. A. Denisov, D. V. Guseinov, V. N. Trushin, A. V. Nezhdanov, D. O. Filatov, and V. G. Shengurov, J. Phys.: Conf. Ser 541, 012026 (2014).

    Google Scholar 

  14. A. Gallagher, Thin Solid Films 395, 25 (2001).

    Article  ADS  Google Scholar 

  15. V. A. Perevozchikov, V. D. Skupov, and V. G. Shengurov, Poverkhnost’. Fiz. Khim. Mekh. 10, 154 (1991).

    Google Scholar 

  16. V. G. Shengurov, S. A. Denisov, V. Yu. Chalkov, Yu. N. Buzynin, M. N. Drozdov, A. N. Buzynin, and P. A. Yunin, Tech. Phys. Lett. 41, 36 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 18-72-10061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sushkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushkov, A.A., Pavlov, D.A., Denisov, S.A. et al. Growth of a Ge Layer on a Si/SiO2/Si(100) Structure by the Hot Wire Chemical Vapor Deposition. Semiconductors 54, 1332–1335 (2020). https://doi.org/10.1134/S1063782620100309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620100309

Keywords:

Navigation