Skip to main content
Log in

The Experience of Analyzing Biological Activity of Ursodeoxycholic Acid as Part of In Silico Prediction of the Gene Expression Profile

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This article was the first attempt to analyze the biological activity of ursodeoxycholic acid in the context of the in silico prediction of changes in activity of genes. Prediction of the dynamics of changes in gene activity was carried out using the DIGEP-Pred algorithm. The obtained gene arrays were analyzed using the GeneMANIA application. Gene annotation was obtained from The Human Protein Atlas. The results showed that the initial sample of genes is distributed according to the localization of expression into several groups: testes, cerebral cortex, placenta, and parathyroid glands. Groups of genes differed among themselves both in the number of members and in the number of relationships between them. The largest group included 25 genes. The activity of the genes of this group was localized to the testes. According to the prediction, all members of this group will be repressed after exposure to ursodeoxycholic acid. The next group consisted of 14 genes located in the cerebral cortex. Within this group, both an increase and a decrease in the activity of genes when exposed to ursodeoxycholic acid are predicted. Groups of the placenta and parathyroid glands contained relatively few genes (nine genes each) and were characterized by a low number of relationships between members. An analysis of the specialized literature revealed the effects of taking ursodeoxycholic acid, which may be associated with the changes in gene activity, which were predicted in silico. There was no unambiguous relationship between the groups of identified in silico genes and the effects described in the literature. It was revealed that 45 genes of the entire array of genes (81 genes) are prognostic markers of oncological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. National Center for Biotechnology Information, PubChem Compound Database: CID=31401. https://pubchem.ncbi.nlm.nih.gov/compound/31401. Accessed November 15, 2018.

  2. Minushkin, O.N., Ursodeoxycholic acid (UDCA) in clinical practice, Med. Sovet., 2010, nos. 1—2, pp. 10—11.

  3. National Center for Biotechnology Information, PubChem Compound Database: CID=10133, https://pubchem.ncbi.nlm.nih.gov/compound/10133. Accessed November 15, 2018.

  4. Hofmann, A.F., Pharmacology of ursodeoxycholic acid, an enterohepatic drug, Scand. J. Gastroenterol., 1994, vol. 29, no. 204, pp. 1—15. https://doi.org/10.3109/00365529409103618

    Article  CAS  Google Scholar 

  5. Poupon, R.E., Poupon, R., Balkau, B., et al., Ursodiol for the long-term treatment of primary biliary cirrhosis, New Engl. J. Med., 1994, vol. 330, no. 19, pp. 1342—1347. https://doi.org/10.1056/NEJM199405123301903

    Article  CAS  PubMed  Google Scholar 

  6. Schiedermaier, P., Hansen, S., Asdonk, D., et al., Effects of ursodeoxycholic acid on splanchnic and systemic hemodynamics, Digestion, 2000, vol. 61, no. 2, pp. 107—112. https://doi.org/10.1159/000007742

    Article  CAS  PubMed  Google Scholar 

  7. National Center for Biotechnology Information, PubChem Compound Database: CID=9903, https://pubchem.ncbi.nlm.nih.gov/compound/9903. Accessed November 15, 2018.

  8. Sinakos, E., Marschall, H.-U., Kowdley, K.V., et al., Bile acid changes after high-dose ursodeoxycholic acid treatment in primary sclerosing cholangitis: relation to disease progression, Hepatology, 2010, vol. 52, no. 1, pp. 197—203. https://doi.org/10.1002/hep.23631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hofmann, A.F., The continuing importance of bile acids in liver and intestinal disease, Arch. Intern. Med., 1999, vol. 159, no. 22, pp. 2647—2658. https://doi.org/10.1001/archinte.159.22.2647

    Article  CAS  PubMed  Google Scholar 

  10. Kowdley, K.V., Ursodeoxycholic acid therapy in hepatobiliary disease, Am. J. Med., 2000, vol. 108, no. 6, pp. 481—486. https://doi.org/10.1016/s0002-9343(00)00318-1

    Article  CAS  PubMed  Google Scholar 

  11. Kotb, M.A., Ursodeoxycholic acid in neonatal hepatitis and infantile paucity of intrahepatic bile ducts: review of a historical cohort, Dig. Dis. Sci., 2009, vol. 54, no. 10, p. 2231. https://doi.org/10.1007/s10620-008-0600-8

    Article  CAS  PubMed  Google Scholar 

  12. Joo, S.S., Kang, H.C., Won, T.J., and Lee, D.I., Ursodeoxycholic acid inhibits pro-inflammatory repertoires, IL-1β and nitric oxide in rat microglia, Arch. Pharm. Res., 2003, vol. 26, no. 12, pp. 1067—1073. https://doi.org/10.1007/bf02994760

    Article  CAS  PubMed  Google Scholar 

  13. Joo, S.S., Kang, H.C., Won, T.J., and Lee, D.I., Inhibition of iNOS expression via ursodeoxycholic acid in murine microglial cell, BV-2 Cell Line, Immune Network, 2005, vol. 5, no. 1, pp. 45—49. https://doi.org/10.4110/in.2005.5.1.45

    Article  Google Scholar 

  14. Joo, S.S., Won, T.J., and Lee, D.I., Potential role of ursodeoxycholic acid in suppression of nuclear factor kappa B in microglial cell line (BV-2), Arch. Pharm. Res., 2004, vol. 27, no. 9, p. 954. https://doi.org/10.1007/bf02975850

    Article  CAS  PubMed  Google Scholar 

  15. Biber, K., Möller, T., Boddeke, E., and Prinz, M., Central nervous system myeloid cells as drug targets: current status and translational challenges, Nat. Rev. Drug Discovery, 2016, vol. 15, no. 2, p. 110. https://doi.org/10.1038/nrd.2015.14

    Article  CAS  PubMed  Google Scholar 

  16. Wee Yong, V., Inflammation in neurological disorders: a help or a hindrance?, Neuroscientist, 2010, vol. 16, no. 4, pp. 408—420. https://doi.org/10.1177/1073858410371379

    Article  CAS  PubMed  Google Scholar 

  17. Gareth, P.J., Cecilia, R., Marcia, A.M., et al., Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis, Clin. Neuropharmac., 2010, vol. 33, no. 1, pp. 17—21. https://doi.org/10.1097/WNF.0b013e3181c47569

    Article  CAS  Google Scholar 

  18. Ramalho, R.M., Viana, R.J.S., Low, W.C., et al., Bile acids and apoptosis modulation: an emerging role in experimental Alzheimer’s disease, Trends Mol. Med., 2008, vol. 14, no. 2, pp. 54—62. https://doi.org/10.1016/j.molmed.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Calmus, Y., Gane, P., Rouger, Ph., and Poupon, R., Hepatic expression of class I and class II major histocompatibility complex molecules in primary biliary cirrhosis: effect of ursodeoxycholic acid, Hepatology, 1990, vol. 11, no. 1, pp. 12—15. https://doi.org/10.1002/hep.1840110104

    Article  CAS  PubMed  Google Scholar 

  20. Yoshikawa, M., Tsujii, T., Matsumura, K., et al., Immunomodulatory effects of ursodeoxycholic acid on immune responses, Hepatology, 1992, vol. 16, no. 2, pp. 358—364. https://doi.org/10.1002/hep.1840160213

    Article  CAS  PubMed  Google Scholar 

  21. Quist, R.G., Ton-Nu, H-T., Lillienau, J., et al., Activation of mast cells by bile acids, Gastroenterology, 1991, vol. 101, no. 2, pp. 446—456. https://doi.org/10.1016/0016-5085(91)90024-f

    Article  CAS  PubMed  Google Scholar 

  22. Solá, S., Amaral, J.D., Aranha, M.M., et al., Modulation of hepatocyte apoptosis: cross-talk between bile acids and nuclear steroid receptors, Curr. Med. Chem., 2006, vol. 13, no. 25, pp. 3039—3051. https://doi.org/10.2174/092986706778521823

    Article  PubMed  Google Scholar 

  23. Solá, S., Amaral, J.D., Castro, R.E., et al., Nuclear translocation of UDCA by the glucocorticoid receptor is required to reduce TGFβ1–induced apoptosis in rat hepatocytes, Hepatology, 2005, vol. 42, no. 4, pp. 925—934. https://doi.org/10.1002/hep.20870

    Article  CAS  PubMed  Google Scholar 

  24. Weitzel, C., Stark, D., Kullmann, F., et al., Ursodeoxycholic acid induced activation of the glucocorticoid receptor in primary rat hepatocytes, Eur. J. Gastroenterol. Hepatol., 2005, vol. 17, no. 2, pp. 169—177. https://doi.org/10.1097/00042737-200502000-00007

    Article  CAS  PubMed  Google Scholar 

  25. Amaral, D., Solá, S., Steer, C., et al., Role of nuclear steroid receptors in apoptosis, Curr. Med. Chem., 2009, vol. 16, no. 29, pp. 3886—3902. https://doi.org/10.2174/092986709789178028

    Article  CAS  PubMed  Google Scholar 

  26. Solá, S., Ma, X., Rui, E., et al., Ursodeoxycholic acid modulates E2F-1 and p53 expression through a caspase-independent mechanism in transforming growth factor β1-induced apoptosis of rat hepatocytes, J. Biol. Chem., 2003, vol. 278, no. 49, pp. 48831—48838. https://doi.org/10.1074/jbc.M300468200

    Article  CAS  PubMed  Google Scholar 

  27. Jacquemin, E., Hermans, D., Myara, A., et al., Ursodeoxycholic acid therapy in pediatric patients with progressive familial intrahepatic cholestasis, Hepatology, 1997, vol. 25, no. 3, pp. 519—523. https://doi.org/10.1002/hep.510250303

    Article  CAS  PubMed  Google Scholar 

  28. Albensi, B.C. and Mattson, M.P., Evidence for the involvement of TNF and NFκB in hippocampal synaptic plasticity, Synapse, 2000, vol. 35, no. 2, pp. 151—159. https://doi.org/10.1002/(SICI)1098-2396(200002)35:2<151::AID-SYN8>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  29. Gilmore, T.D., Introduction to NF-κB: players, pathways, perspectives, Oncogene, 2006, vol. 25, no. 51, p. 6680. https://doi.org/10.1038/sj.onc.1209954

    Article  CAS  PubMed  Google Scholar 

  30. Perkins, N.D., Integrating cell-signalling pathways with NF-κB and IKK function, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, no. 1, p. 49. https://doi.org/10.1038/nrm2083

    Article  CAS  PubMed  Google Scholar 

  31. Miura, T., Ouchida, R., Yoshikawa, N., et al., Functional modulation of the glucocorticoid receptor and suppression of NF-κB-dependent transcription by ursodeoxycholic acid, J. Biol. Chem., 2001, vol. 276, no. 50, pp. 47371—47378. https://doi.org/10.1074/jbc.M107098200

    Article  CAS  PubMed  Google Scholar 

  32. Schuster, A., Schilling, T., Laurenzi, V., et al., ΔNp73β is oncogenic in hepatocellular carcinoma by blocking apoptosis signaling via death receptors and mitochondria, Cell Cycle, 2010, vol. 9, no. 13, pp. 2629—2639. https://doi.org/10.4161/cc.9.13.12110

    Article  CAS  PubMed  Google Scholar 

  33. Masferrer, J.L. and Seibert, K., Regulation of prostaglandin synthesis by glucocorticoids, Receptor, 1994, vol. 4, no. 1, pp. 25—30.

    CAS  PubMed  Google Scholar 

  34. Goppelt-Struebe, M., Molecular mechanisms involved in the regulation of prostaglandin biosynthesis by glucocorticoids, Biochem. Pharm., 1997, vol. 53, no. 10, pp. 1389—1395. https://doi.org/10.1038/sj.ki.5002058

    Article  CAS  PubMed  Google Scholar 

  35. Ikegami, T., Matsuzaki, Y., Fukushima, S., et al., Suppressive effect of ursodeoxycholic acid on type IIA phospholipase A2 expression in HepG2 cells, Hepatology, 2005, vol. 41, no. 4, pp. 896—905. https://doi.org/10.1002/hep.20630

    Article  CAS  PubMed  Google Scholar 

  36. Mitsuyoshi, H., Nakashima, T., Inaba, K., et al., Ursodeoxycholic acid enhances glucocorticoid-induced tyrosine aminotransferase-gene expression in cultured rat hepatocytes, Bioch. Biophys. Res. Commun., 1997, vol. 240, no. 3, pp. 732—736. https://doi.org/10.1006/bbrc.1997.7733

    Article  CAS  Google Scholar 

  37. Luisi, B.F., Xu, W.X., Otwinowski, Z., et al., Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA, Nature, 1991, vol. 352, no. 6335, P. 497. https://doi.org/10.1038/352497a0

    Article  CAS  PubMed  Google Scholar 

  38. Savory, J.G.A., Préfontaine, G.G., Lamprecht, C., et al., Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces, Mol. Cell. Biol., 2001, vol. 21, no. 3, pp. 781—793. https://doi.org/10.1128/MCB.21.3.781-793.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Solá, S., Castro, R.E., Kren, B.T., et al., Modulation of nuclear steroid receptors by ursodeoxycholic acid inhibits TGF-β1-induced E2F-1/p53-mediated apoptosis of rat hepatocytes, Biochemistry, 2004, vol. 43, no. 26, pp. 8429—8438. https://doi.org/10.1021/bi049781x

    Article  CAS  PubMed  Google Scholar 

  40. Shi, Q.Y., Kong, B.H., Ma, K.D., et al., Effects of ursodeoxycholic acid on the liver plasma membrane fluidity, hepatic glutathione concentration, hepatic estrogen receptors and progesterone receptors in pregnant rats with ethinylestradiol and progesterone induced intrahepatic cholestasis, Zhonghua Fu Chan Ke za Zhi, 2003, vol. 38, no. 11, pp. 680—682.

    PubMed  Google Scholar 

  41. Rodrigues, C.M.P., Ma, X., Linehan-Stieers, C., et al., Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation, Cell Death Diff., 1999, vol. 6, no. 9, p. 842. https://doi.org/10.1038/sj.cdd.4400560

    Article  CAS  Google Scholar 

  42. Nishigaki, Y., Ohnishi, H., Moriwak, H., and Muto, Y., Ursodeoxycholic acid corrects defective natural killer activity by inhibiting prostaglandin E2 production in primary biliary cirrhosis, Dig. Dis. Sci., 1996, vol. 41, no. 7, pp. 1487—1493. https://doi.org/10.1007/BF02088577

    Article  CAS  PubMed  Google Scholar 

  43. Guarino, M.P.L., Carotti, S., Morini, S., et al., Decreased number of activated macrophages in gallbladder muscle layer of cholesterol gallstone patients following ursodeoxycholic acid, Gut, 2008, vol. 57, no. 12, pp. 1740—1741. https://doi.org/10.1136/gut.2008.160333

    Article  CAS  PubMed  Google Scholar 

  44. Bachrach, W.H. and Hofmann, A.F., Ursodeoxycholic acid in the treatment of cholesterol cholelithiasis, Dig. Dis. Sci., 1982, vol. 27, no. 8, pp. 737—761. https://doi.org/10.1007/BF01393771

    Article  CAS  PubMed  Google Scholar 

  45. Zollner, G. and Trauner, M., Nuclear receptors as therapeutic targets in cholestatic liver diseases, Br. J. Pharmacol., 2009, vol. 156, no. 1, pp. 7—27. https://doi.org/10.1111/j.1476-5381.2008.00030.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodrigues, C.M.P., Fan, G., Wong, P.Y., et al., Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production, Mol. Med., 1998, vol. 4, no. 3, pp. 165—178.

    Article  CAS  Google Scholar 

  47. Koh, H., Lee, K.H., Kim, D., et al., Inhibition of Akt and its anti-apoptotic activities by tumor necrosis factor-induced protein kinase C-related kinase 2 (PRK2) cleavage, J. Biol. Chem., 2000, vol. 275, no. 44, pp. 34451—34458. https://doi.org/10.1074/jbc.M001753200

    Article  CAS  PubMed  Google Scholar 

  48. Amaral, J.D., Castro, R.E., Solá, S., et al., p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis, J. Biol. Chem., 2007, vol. 282, no. 47, pp. 34250—34259. https://doi.org/10.1074/jbc.M704075200

    Article  CAS  PubMed  Google Scholar 

  49. Amaral, D.J., Xavier, J.M., Clifford, J.S., et al., Targeting the p53 pathway of apoptosis, Curr. Pharm. Des., 2010, vol. 16, no. 22, pp. 2493—2503. https://doi.org/10.2174/138161210791959818

    Article  CAS  PubMed  Google Scholar 

  50. Yu, J. and Zhang, L., PUMA, a potent killer with or without p53, Oncogene, 2009, vol. 27, no. S1, p. S71. https://doi.org/10.1038/onc.2009.45

    Article  CAS  Google Scholar 

  51. Gudkov, A.V. and Komarova, E.A., The role of p53 in determining sensitivity to radiotherapy, Nat. Rev. Cancer, 2003, vol. 3, no. 2, p. 117. https://doi.org/10.1016/j.ijrobp.2004.03.005

    Article  CAS  PubMed  Google Scholar 

  52. Joerger, A.C. and Fersht, A.R., Structural biology of the tumor suppressor p53, Annu. Rev. Biochem., 2008, vol. 77, pp. 557—582. https://doi.org/10.1146/annurev.biochem.77.060806.091238

    Article  CAS  PubMed  Google Scholar 

  53. Park, I.H., Kim, M.K., and Kim, S.U., Ursodeoxycholic acid prevents apoptosis of mouse sensory neurons induced by cisplatin by reducing p53 accumulation, Biochem. Biophys. Res. Commun., 2008, vol. 377, no. 4, pp. 1025—1030. https://doi.org/10.1016/j.bbrc.2008.06.014

    Article  CAS  PubMed  Google Scholar 

  54. Ji, W.J., Qu, Q., Jin, Y., et al., Ursodeoxycholic acid inhibits hepatocyte-like cell apoptosis by down-regulating the expressions of Bax and Caspase-3, Zhonghua Yi Xue Za Zhi, 2009, vol. 89, no. 42, pp. 2997—3001.

    CAS  PubMed  Google Scholar 

  55. Hess, J., Angel, P., and Schorpp-Kistner, M., AP-1 subunits: quarrel and harmony among siblings, J. Cell Sci., 2004, vol. 117, no. 25, pp. 5965—5973. https://doi.org/10.1242/jcs.01589

    Article  CAS  PubMed  Google Scholar 

  56. Im, E. and Martinez, J.D., Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells, J. Nutr., 2004, vol. 134, no. 2, pp. 483—486. https://doi.org/10.1093/jn/134.2.483

    Article  CAS  PubMed  Google Scholar 

  57. Burnat, G., Majka, J., and Konturek, P.C., Bile acids are multifunctional modulators of the Barrett’s carcinogenesis, J. Physiol. Pharmac., 2010, vol. 61, no. 2, p. 185.

    CAS  Google Scholar 

  58. Martinez-Diez, M.C., Serrano, M.A., Monte, M.J., and Marin, J.J.G., Comparison of the effects of bile acids on cell viability and DNA synthesis by rat hepatocytes in primary culture, Biochim. Biophys. Acta,Mol. Basis Dis., 2000, vol. 1500, no. 2, pp. 153—160. https://doi.org/10.1016/s0925-4439(99)00099-x

    Article  CAS  Google Scholar 

  59. Ashley, A.P., Akare, S., Wenqing, Qi., et al., Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity, BMC Cancer, 2006, vol. 6, no. 1, p. 219. https://doi.org/10.1186/1471-2407-6-219

    Article  CAS  Google Scholar 

  60. Garewal, H., Bernstein, H., Bernstein, C., et al., Reduced bile acid-induced apoptosis in “normal” colorectal mucosa: a potential biological marker for cancer risk, Cancer Res., 1996, vol. 56, no. 7, pp. 1480—1483.

    CAS  PubMed  Google Scholar 

  61. Castro, R.E., Amaral, J.D., Solá, S., et al., Differential regulation of cyclin D1 and cell death by bile acids in primary rat hepatocytes, Am. J. Physiol.: Gastrointest. Liver Physiol., 2007, vol. 293, no. 1, pp. G327—G334. https://doi.org/10.1152/ajpgi.00093.2007

    Article  CAS  Google Scholar 

  62. He, Y., Liu, Z., Qiao, C., et al., Expression and significance of Wnt signaling components and their target genes in breast carcinoma, Mol. Med. Rep., 2014, vol. 9, no. 1, pp. 137—143. https://doi.org/10.3892/mmr.2013.1774

    Article  CAS  PubMed  Google Scholar 

  63. Zasadkevich, Yu.M. and Sazonov, S.V., The role of E-cadherin cell adhesion molecule in human ontogenesis in norm and pathology, Morfologiya, 2014, vol. 146, no. 5, pp. 78—82.

    Google Scholar 

  64. Akare, S., Jean-Louis, S., Chen, W., et al., Ursodeoxycholic acid modulates histone acetylation and induces differentiation and senescence, Int. J. Cancer, 2006, vol. 119, no. 12, pp. 2958—2969. https://doi.org/10.1002/ijc.22231

    Article  CAS  PubMed  Google Scholar 

  65. Huang, J., Plass, C., and Gerhauser, C., Cancer chemoprevention by targeting the epigenome, Curr. Drug Targets, 2011, vol. 12, no. 13, pp. 1925—1956. https://doi.org/10.2174/138945011798184155

    Article  CAS  PubMed  Google Scholar 

  66. Oike, T., Ogiwara, H., Torikai, K., et al., Garcinol, a histone acetyltransferase inhibitor, radiosensitizes cancer cells by inhibiting non-homologous end joining, Int. J. Radiation Oncol., Biol., Physics, 2012, vol. 84, no. 3, pp. 815—821. https://doi.org/10.1016/j.ijrobp.2012.01.017

    Article  CAS  Google Scholar 

  67. Paumgartner, G. and Beuers, U., Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited, Hepatology, 2002, vol. 36, no. 3, pp. 525—531. https://doi.org/10.1053/jhep.2002.36088

    Article  CAS  PubMed  Google Scholar 

  68. Lazaridis, K.N., Gores, G.J., and Lindor, K.D., Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepatobiliary disorders’, J. Hepatol., 2001, vol. 35, no. 1, pp. 134—146. https://doi.org/10.1016/s0168-8278(01)00092-7

    Article  CAS  PubMed  Google Scholar 

  69. Rodrigues, C.M., Fan, G., Ma, X., et al., A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation, J. Clin. Invest., 1998, vol. 101, no. 12, pp. 2790—2799. https://doi.org/10.1172/JCI1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Abate, N., Carubbi, F., Bozzoli, M., et al., Effect of chenodeoxycholic acid and ursodeoxycholic acid administration on acyl-CoA: cholesterol acyltransferase activity in human liver, Ital. J. Gastroenterol., 1994, vol. 26, no. 6, pp. 287—293.

    CAS  PubMed  Google Scholar 

  71. Smith, L.L., Another cholesterol hypothesis: cholesterol as antioxidant, Free Radical Biol. Med., 1991, vol. 11, no. 1, pp. 47—61. https://doi.org/10.1016/0891-5849(91)90187-8

    Article  CAS  Google Scholar 

  72. DuSell, C.D., Nelson, E.R., Wang, X., et al., The endogenous selective estrogen receptor modulator 27-hydroxycholesterol is a negative regulator of bone homeostasis, Endocrinology, 2010, vol. 151, no. 8, pp. 3675—3685. https://doi.org/10.1210/en.2010-0080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Galluzzi, L., Morselli, E., Kepp, O., et al., Mitochondrial gateways to cancer, Mol. Aspects Med., 2010, vol. 31, no. 1, pp. 1—20. https://doi.org/10.1016/j.mam.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  74. Bouscarel, B., Gettys, T.W., Fromm, H., and Dubner, H., Ursodeoxycholic acid inhibits glucagon-induced cAMP formation in hamster hepatocytes: a role for PKC, Am. J. Physiol.: Gastrointest. Liver Physiol., 1995, vol. 268, no. 2, pp. G300—G310. https://doi.org/10.1152/ajpgi.1995.268.2.G300

    Article  CAS  Google Scholar 

  75. Bouscarel, B., Matsuzaki, Y., Le, M., et al., Changes in G protein expression account for impaired modulation of hepatic cAMP formation after BDL, Am. J. Physiol.: Gastrointest. Liver Physiol., 1998, vol. 274, no. 6, pp. G1151—G1159. https://doi.org/10.1152/ajpgi.1998.274.6.G1151

    Article  CAS  Google Scholar 

  76. Peterson, T.C., Slysz, G., and Isbrucker, R., The inhibitory effect of ursodeoxycholic acid and pentoxifylline on platelet derived growth factor-stimulated proliferation is distinct from an effect by cyclic AMP, Immunopharmacology, 1998, vol. 39, no. 3, pp. 181—191. https://doi.org/10.1016/s0162-3109(98)00021-6

    Article  CAS  PubMed  Google Scholar 

  77. Higuchi, H., Grambihler, A., Canbay, A., et al., Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N-terminal kinase-dependent pathway involving Sp1, J. Biol. Chem., 2004, vol. 279, no. 1, pp. 51—60. https://doi.org/10.1074/jbc.M309476200

    Article  CAS  PubMed  Google Scholar 

  78. Andersson, Y., Juell, S., and Fodstad, O., Downregulation of the antiapoptotic MCL-1 protein and apoptosis in MA-11 breast cancer cells induced by an anti-epidermal growth factor receptor–Pseudomonas exotoxin a immunotoxin, Int. J. Cancer, 2004, vol. 112, no. 3, pp. 475—483. https://doi.org/10.1002/ijc.20371

    Article  CAS  PubMed  Google Scholar 

  79. Rolo, A.P., Palmeira, C.M., Holy, J.M., and Wallace, K.B., Role of mitochondrial dysfunction in combined bile acid-induced cytotoxicity: the switch between apoptosis and necrosis, Toxicol. Sci., 2004, vol. 79, no. 1, pp. 196—204. https://doi.org/10.1093/toxsci/kfh078

    Article  CAS  PubMed  Google Scholar 

  80. Paolini, M., Pozzetti, L., Montagnani, M., et al., Ursodeoxycholic acid (UDCA) prevents DCA effects on male mouse liver via up-regulation of CXP and preservation of BSEP activities, Hepatology, 2002, vol. 36, no. 2, pp. 305—314. https://doi.org/10.1053/jhep.2002.34939

    Article  CAS  PubMed  Google Scholar 

  81. Pemberton, P.W., Aboutwerat, A., Smith, A., and Warnes, T.W., Ursodeoxycholic acid in primary biliary cirrhosis improves glutathione status but fails to reduce lipid peroxidation, Redox Rep., 2006, vol. 11, no. 3, pp. 117—123. https://doi.org/10.1179/135100006X116600

    Article  CAS  PubMed  Google Scholar 

  82. Zollner, G., Wagner, M., Moustafa, T., et al., Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-α/β in the adaptive response to bile acids, Am. J. Physiol.: Gastrointest. Liver Physiol., 2006, vol. 290, no. 5, pp. G923—G932. https://doi.org/10.1152/ajpgi.00490.2005

    Article  CAS  Google Scholar 

  83. Poroikov, V.V. and Filimonov, D.A., Komp’yuternyi prognoz biologicheskoi aktivnosti khimicheskikh soedinenii kak osnova dlya poiska i optimizatsii bazovykh struktur novykh lekarstv (Computer Prediction of the Biological Activity of Chemical Compounds as a Basis for the Search and Optimization of the Basic Structures of New Drugs), Moscow: : Iridium-Press, 2001, pp. 123—125.

  84. Lagunin, A., Ivanov, S., Rudik, A., et al., DIGEP-Pred: web service for in silico prediction of drug-induced gene expression profiles based on structural formula, Bioinformatics, 2013, vol. 29, no. 16, pp. 2062—2063. https://doi.org/10.1093/BIOINFORMATICS/BTT322

    Article  CAS  PubMed  Google Scholar 

  85. Warde-Farley, D., Donaldson, S.L., Comes, O., et al., The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res., 2010, vol. 38, suppl. 2, pp. W214—W220. https://doi.org/10.1093/NAR/GKQ537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Diss, G. and Lehner, B., The genetic landscape of a physical interaction, eLife, 2018, vol. 7, p. e32472. https://doi.org/10.7554/eLife.32472

    Article  PubMed  PubMed Central  Google Scholar 

  87. Boucher, B. and Jenna, S., Genetic interaction networks: better understand to better predict, Front. Genet., 2013, vol. 4, p. 290. https://doi.org/10.3389/fgene.2013.00290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Uhlen, M., Zhang, C., Lee, S., et al., A pathology atlas of the human cancer transcriptome, Science, 2017, vol. 357, no. 6352, p. eaan2507. https://doi.org/10.1126/science.aan2507

  89. Thul, P.J., Åkesson, L., Wiking, M., et al., A subcellular map of the human proteome, Science, 2017, vol. 356, no. 6340. p. eaal3321. https://doi.org/10.1126/science.aal3321

  90. Uhlén, M., Fagerberg, L., Hallström, B.M., et al., Tissue-based map of the human proteome, Science, 2015, vol. 347, no. 6220, p. 1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, P., Cao, H.Y., Bai, L.L., et al., The high expression of TC1 (C8orf4) was correlated with the expression of β-catenin and cyclin D1 and the progression of squamous cell carcinomas of the tongue, Tumor Biol., 2015, vol. 36, no. 9, pp. 7061—7067. https://doi.org/10.1007/s13277-015-3423-1

    Article  CAS  Google Scholar 

  92. Demidenko, G.V., Kolchanov, N.A., Likhoshvai, V.A., et al., Mathematical modeling of regular contours of gene networks, Zh. Vychisl. Mat. Mat. Fiz., 2004, vol. 44, no. 12, pp. 2276—2295.

    Google Scholar 

  93. Kolchanov, N.A., Ananko, E.A., Likhoshvai, V.A., et al., Gene networks description and modeling in the GeneNet system, in Gene Regulation and Metabolism: Postgenomic Computational Approaches, Collado-Vides, J. and Hofestadt, R., Eds., MIT Press, 2002, pp. 149—179.

    Google Scholar 

  94. Kwon, Y.I., Yeon, J.D., Oh, S.M., and Chung, K.H., Protective effects of ursodeoxycholic acid against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced testicular damage in mice, Toxicol. Appl. Pharmacol., 2004, vol. 194, no. 3, pp. 239—247. https://doi.org/10.1016/j.taap.2003.09.024

    Article  CAS  PubMed  Google Scholar 

  95. Saad, R.A. and Mahmoud, Y.I., Ursodeoxycholic acid alleviates cholestasis-induced histophysiological alterations in the male reproductive system of bile duct-ligated rats, Reprod. Toxicol., 2014, vol. 50, pp. 87—97. https://doi.org/10.1016/j.reprotox.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  96. Mahmoud, Y.I., Testicular immunohistochemical and ultrastructural changes associated with chronic cholestasis in rats: effect of ursodeoxycholic acid, Life Sci., 2015, vol. 136, pp. 52—59. https://doi.org/10.1016/j.lfs.2015.05.027

    Article  CAS  PubMed  Google Scholar 

  97. Zhang, X., Chen, S., Yoo, S., et al., Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death, Cell, 2008, vol. 135. №. 6, pp. 1017—1027. https://doi.org/10.1016/j.cell.2008.10.022

    Article  CAS  PubMed  Google Scholar 

  98. Balagoni, H., Devani, K., Phemister, J., and Young, M.F., Ursodiol-associated paroxysmal atrial fibrillation, Am. J. Ther., 2017, vol. 24, no. 5, pp. e612—e613. https://doi.org/10.1097/MJT.0000000000000570

    Article  PubMed  Google Scholar 

  99. Rainer, P.P., Primessnig, U., Harenkamp, S., et al., Bile acids induce arrhythmias in human atrial myocardium—implications for altered serum bile acid composition in patients with atrial fibrillation, Heart, 2013, vol. 99, no. 22, pp. 1685—1692. https://doi.org/10.1136/heartjnl-2013-304163

    Article  CAS  PubMed  Google Scholar 

  100. Chen, T., Zhou, L., Zhou, Y., et al., HJURP promotes epithelial-to-mesenchymal transition via upregulating SPHK1 in hepatocellular carcinoma, Int. J. Biol. Sci., 2019, vol. 15, no. 6, p. 1139. https://doi.org/10.7150/ijbs.30904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kuiper, E.M.M., Hansen, B.E., Adang, R.P.R., et al., Relatively high risk for hepatocellular carcinoma in patients with primary biliary cirrhosis not responding to ursodeoxycholic acid, Eur. J. Gastroenterol. Hepatology, 2010, vol. 22, no. 12, pp. 1495—1502. https://doi.org/10.1097/MEG.0b013e32834059e7

    Article  CAS  Google Scholar 

  102. Rudolph, G., Gotthardt, D.N., Kloeters-Plachky, P., et al., In PSC with colitis treated with UDCA, most colonic carcinomas develop in the first years after the start of treatment, Dig. Dis. Sci., 2011, vol. 56, no. 12, pp. 3624—3630. https://doi.org/10.1007/s10620-011-1763-2

    Article  CAS  PubMed  Google Scholar 

  103. Nye, J., Sturgill, D., Athwal, R., and Dalal, Y., HJURP antagonizes CENP-A mislocalization driven by the H3.3 chaperones HIRA and DAXX, PLoS One, 2018, vol. 13, no. 10, p. e0205948. https://doi.org/10.1371/journal.pone.0205948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shimamoto, A., Nishikawa, K., Kitao, S., and Furuichi, Y., Human RecQ5β, a large isomer of RecQ5 DNA helicase, localizes in the nucleoplasm and interacts with topoisomerases 3α and 3β, Nucleic Acids Res., 2000, vol. 28, no. 7, pp. 1647—1655. https://doi.org/10.1093/nar/28.7.1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Abdelrahman, H.A., John, A., Ali, B.R., and Al-Gazali, L., Further delineation of the microcephaly-micromelia syndrome associated with loss-of-function variants in DONSON, Mol. Syndromol., 2019, vol. 10, no. 3, pp. 171—176. https://doi.org/10.1159/000497337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fimognari, C., Nüsse, M., Cesari, R., et al., Micronuclei induction, cell cycle delay and apoptosis as markers of cellular stress caused by ursodeoxycholic acid in human lymphocytes, Mutat. Res., Genet. Toxicol. Environ. Mutagen., 2001, vol. 495, nos. 1—2, pp. 1—9. https://doi.org/10.1016/s1383-5718(01)00197-8

    Article  CAS  Google Scholar 

  107. García, E., Marcos-Gutiérrez, C., del Mar Lorente, M, et al., RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1, EMBO J., 1999, vol. 18, no. 12, pp. 3404—3418. https://doi.org/10.1093/emboj/18.12.3404

    Article  PubMed  PubMed Central  Google Scholar 

  108. Petrov, A.M., Kasimov, M.R., and Zefirov, A.L., Brain cholesterol metabolism and its defects: linkage to neurodegenerative diseases and synaptic dysfunction, Acta Nat., 2016, vol. 8, no. 1(28), pp. 58—73.

  109. Dietschy, J.M., Central nervous system: cholesterol turnover, brain development and neurodegeneration, Biol. Chem., 2009, vol. 390, no. 4, pp. 287—293. https://doi.org/10.1515/BC.2009.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wassif, C.A., Zhu, P., Kratz, L., et al., Biochemical, phenotypic and neurophysiological characterization of a genetic mouse model of RSH/Smith—Lemli—Opitz syndrome, Hum. Mol. Genet., 2001, vol. 10, no. 6, pp. 555—564. https://doi.org/10.1093/hmg/10.6.555

    Article  CAS  PubMed  Google Scholar 

  111. Sparks, S.E., Wassif, C.A., Goodwin, H., et al., Decreased cerebral spinal fluid neurotransmitter levels in Smith—Lemli—Opitz syndrome, J. Inherited Metab. Dis., 2014, vol. 37, no. 3, pp. 415—420. https://doi.org/10.1007/s10545-013-9672-5

    Article  CAS  PubMed  Google Scholar 

  112. Pardue, M.T. and Allen, R.S., Neuroprotective strategies for retinal disease, Prog. Retinal Eye Res., 2018, vol. 65, pp. 50—76. https://doi.org/10.1016/j.preteyeres.2018.02.002

    Article  CAS  Google Scholar 

  113. Cortez, L.M., Campeau, J., Norman, G., et al., Bile acids reduce prion conversion, reduce neuronal loss, and prolong male survival in models of prion disease, J. Virol., 2015, vol. 89, no. 15, pp. 7660—7672. https://doi.org/10.1128/JVI.01165-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Keene, C.D., Rodrigues, C.M.P., Eich, T., et al., Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 16, pp. 10671—10676. https://doi.org/10.1073/pnas.162362299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yanovsky, Y., Schubring, S.R., Yao, Q., et al., Waking action of ursodeoxycholic acid (UDCA) involves histamine and GABAA receptor block, PLoS One, 2012, vol. 7, no. 8, p. e42512. https://doi.org/10.1371/journal.pone.0042512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tuem, K.B. and Atey, T.M., Neuroactive steroids: receptor interactions and responses, Front. Neurol., 2017, vol. 8, p. 442. https://doi.org/10.3389/fneur.2017.00442

    Article  PubMed  PubMed Central  Google Scholar 

  117. Numakawa, T., Suzuki, S., Kumamaru, E., et al., BDNF function and intracellular signaling in neurons, Histol. Histopathol., 2010, vol. 25, pp. 237—258. https://doi.org/10.14670/HH-25.237

    Article  CAS  PubMed  Google Scholar 

  118. Hayashi, H., Lipid metabolism and glial lipoproteins in the central nervous system, Biol. Pharm. Bull., 2011, vol. 34, no. 4, pp. 453—461. https://doi.org/10.1248/bpb.34.453

    Article  CAS  PubMed  Google Scholar 

  119. Bron, R., Vermeren, M., Kokot, N., et al., Boundary cap cells constrain spinal motor neuron somal migration at motor exit points by a semaphorin—plexin mechanism, Neural Dev., 2007, vol. 2, no. 1, p. 21. https://doi.org/10.1186/1749-8104-2-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Allen, N.C., Bagade, S., McQueen, M.B., et al., Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database, Nat. Genet., 2008, vol. 40, no. 7, pp. 827—834. https://doi.org/10.1038/ng.171

    Article  CAS  PubMed  Google Scholar 

  121. Wray, N.R., James, M.R., Mah, S.P., et al., Anxiety and comorbid measures associated with PLXNA2, Arch. Gen. Psychiatry, 2007, vol. 64, no. 3, pp. 318—326. https://doi.org/10.1001/archpsyc.64.3.318

    Article  CAS  PubMed  Google Scholar 

  122. Kovaleva, N.B. and Bairamova, I.Kh., Intrahepatic cholestasis of pregnancy, Ross. Zh. Gastroenterol., Gepatol.Koloproktol., 2006, vol. 16, no. 3, pp. 36—40.

    Google Scholar 

  123. Lofthouse, E.M., Torrens, C., Manousopoulou, A., et al., Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta, FASEB J., 2019, vol. 33, no. 7, pp. 8211—8220. https://doi.org/10.1096/fj.201900015RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ehnert, S., Aspera-Werz, R.H., Ruoß, M., et al., Hepatic osteodystrophy—molecular mechanisms proposed to favor its development, Int. J. Mol. Sci., 2019, vol. 20, no. 10, p. 2555. https://doi.org/10.3390/ijms20102555

    Article  CAS  PubMed Central  Google Scholar 

  125. Verma, A., Maxwell, J.D., Ang, L., et al., Ursodeoxycholic acid enhances fractional calcium absorption in primary biliary cirrhosis, Osteoporosis Int., 2002, vol. 13, no. 8, pp. 677—682. https://doi.org/10.1007/s001980200092

    Article  CAS  Google Scholar 

  126. Yablokov, A.V., Fenetika: evolyutsiya, populyatsiya, priznak (Phenetics: Evolution, Population, Trait), Moscow: Nauka, 1980.

  127. Timofeev-Resovskii, N.V. and Yablokov, A.V., Phenes, phenetics, and evolutionary biology, Priroda, 1973, no. 5, pp. 40—51.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. B. Neskorodov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Novikova

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neskorodov, Y.B., Mardanly, S.G. & Chuprov-Netochin, R.N. The Experience of Analyzing Biological Activity of Ursodeoxycholic Acid as Part of In Silico Prediction of the Gene Expression Profile. Russ J Genet 56, 1162–1179 (2020). https://doi.org/10.1134/S1022795420100099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420100099

Keywords:

Navigation