Skip to main content
Log in

Changes in DNA Methylation Induced by Dioxins and Dioxin-Like Compounds as Potential Predictor of Disease Risk

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Dioxins and dioxin-like compounds are persistent organic pollutants (POPs) and technogenic ecotoxicants, the most dangerous of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). A peculiar feature of the considered genotoxicants that distinguishes them from other POPs is hormone-like activity, which is realized through binding to a special cellular protein, the Aryl hydrocarbon Receptor (AhR). In the present study, the phenomenological aspects of DNA methylation changes induced by dioxins and dioxin-like compounds and revealed in the studies in vitro and in vivo are considered. In animal models, multigenerational and transgenerational effects of dioxin-induced locus-specific DNA methylation changes and their association with reproductive dysfunctions and congenital malformations were firmly established. The importance of investigations of the long-term epigenetic consequences of human exposure to dioxins and the potential value of such studies for preventive diagnostics of somatic and reproductive pathologies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Rumak, V.S., Umnova, N.V., Sofronov, G.A., and Pavlov, D.S., Molekulyarnaya toksikologiya dioksinov (Molecular Toxicology of Dioxins), St. Petersburg: Nauka, 2013.

  2. Van den Berg, M., De Jongh, J., Poiger, H., and Olson, J.R., The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and their relevance for toxicity, Crit. Rev. Toxicol., 1994, vol. 24, no. 1, pp. 1—74. https://doi.org/10.3109/10408449409017919

    Article  CAS  PubMed  Google Scholar 

  3. Rumak, V.S., Khanh, T.Q., Kuznetsov, A.N., et al., The effect of dioxins on the environment and human health, Her. Russ. Acad. Sci., 2009, vol. 79, no. 2, pp. 50—56. https://doi.org/10.1134/S1019331609010079

    Article  Google Scholar 

  4. Viluksela, M. and Pohjanvirta, R., Multigenerational and transgenerational effects of dioxins, Int. J. Mol. Sci., 2019, vol. 20, no. 12. E 2947. https://doi.org/10.3390/ijms20122947

  5. National Academies of Sciences, Engineering, and Medicine, Veterans and Agent Orange: Update 11(2018), Washington, DC: National Academies Press, 2018. https://doi.org/10.17226/25137

  6. Zhuchenko, N.A., Umnova, N.V., Rumak, V.S., et al., Inborn morphogenetic variants and genetic polymorphism of the system of detoxication of xenobiotics in children from dioxin polluted areas in Southern Vietnam,, Vestn. Russ. Akad. Med. Nauk, 2006, no. 7, pp. 3—10.

  7. Eskenazi, B., Mocarelli, P., Warner, M., et al., Relationship of serum TCDD concentrations and age at exposure of female residents of Seveso, Italy, Environ. Health Perspect., 2004, vol. 112, no. 1, pp. 22—27. https://doi.org/10.1289/ehp.6573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baccarelli, A., Giacomini, S.M., Corbetta, C., et al., Neonatal thyroid function in Seveso 25 years after maternal exposure to dioxin, PLoS Med., 2008, vol. 5, no. 7. e161. https://doi.org/10.1371/journal.pmed.0050161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ni, H.G., Zeng, H., Tao, S., and Zeng, E.Y., Environmental and human exposure to persistent halogenated compounds derived from e-waste in China, Environ. Toxicol. Chem., 2010, vol. 29, no. 6, pp. 1237—1247. https://doi.org/10.1002/etc.160

    Article  CAS  PubMed  Google Scholar 

  10. Guo, Y.L., Hsu, P.C., Hsu, C.C., and Lambert, G.H., Semen quality after prenatal exposure to polychlorinated biphenyls and dibenzofurans, Lancet, 2000, vol. 356, no. 9237, pp. 1240—1241. https://doi.org/10.1016/S0140-6736(00)02792-6

    Article  CAS  PubMed  Google Scholar 

  11. Carpenter, D.O., Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health, Rev. Environ. Health, 2006, vol. 21, no. 1, pp. 1–23. https://doi.org/10.1515/reveh.2006.21.1.1

    Article  CAS  PubMed  Google Scholar 

  12. Mocarelli, P., Gerthoux, P.M., Ferrari, E., et al., Paternal concentrations of dioxin and sex ratio of offspring, Lancet, 2000, vol. 355, no. 9218, pp. 1858—1863. https://doi.org/10.1016/S0140-6736(00)02290-X

    Article  CAS  PubMed  Google Scholar 

  13. Mocarelli, P., Gerthoux, P.M., Needham, L.L., et al., Perinatal exposure to low doses of dioxin can permanently impair human semen quality, Environ. Health Perspect., 2011, vol. 119, no. 5, pp. 713—718. https://doi.org/10.1289/ehp.1002134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryan, J.J., Amirova, Z., and Carrier, G., Sex ratios of children of Russian pesticide producers exposed to dioxin, Environ. Health Perspect., 2002, vol. 110, no. 11, pp. A699—A701. https://doi.org/10.1289/ehp.021100699

    Article  PubMed  PubMed Central  Google Scholar 

  15. ‘t Mannetje, A., Eng, A., Walls, C., et al., Sex ratio of the offspring of New Zealand phenoxy herbicide producers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, Occup. Environ. Med., 2017, vol. 74, no. 1, pp. 24—29. https://doi.org/10.1136/oemed-2016-103771

    Article  PubMed  Google Scholar 

  16. Ema, M., Sogawa, K., Watanabe, N., et al., cDNA cloning and structure of mouse putative Ah receptor, Biochem. Biophys. Res. Commun., 1992, vol. 184, no. 1, pp. 246—253. https://doi.org/10.1016/0006-291x(92)91185-s

    Article  CAS  PubMed  Google Scholar 

  17. Burbach, K.M., Poland, A., and Bradfield, C.A., Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, no. 17, pp. 8185—8189. https://doi.org/10.1073/pnas.89.17.8185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petrulis, J.R. and Perdew, G.Y., The role of chaperone proteins in the aryl hydrocarbon receptor core complex, Chem. Biol. Interact., 2002, vol. 141, nos. 1—2, pp. 25—40. https://doi.org/10.1016/s0009-2797(02)00064-9

    Article  CAS  PubMed  Google Scholar 

  19. Henry, E.C. and Gasiewicz, T.A., Agonist but not antagonist ligands induce conformational change in the mouse aryl hydrocarbon receptor as detected by partial proteolysis, Mol. Pharmacol., 2003, vol. 63, no. 2, pp. 392—400. https://doi.org/10.1124/mol.63.2.392

    Article  CAS  PubMed  Google Scholar 

  20. Soshilov, A. and Denison, M.S., Role of the Per/Arnt/Sim domains in ligand-dependent transformation of the aryl hydrocarbon receptor, J. Biol. Chem., 2008, vol. 283, no. 47, pp. 32995—33005. https://doi.org/10.1074/jbc.M802414200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Richter, C.A., Tillitt, D.E., and Hannink, M., Regulation of subcellular localization of the aryl hydrocarbon receptor (AhR), Arch. Biochem. Biophys., 2001, vol. 389, no. 2, pp. 207—217. https://doi.org/10.1006/abbi.2001.2339

    Article  CAS  PubMed  Google Scholar 

  22. Mulero-Navarro, S. and Fernandez-Salguero, P.M., New trends in aryl hydrocarbon receptor biology, Front. Cell Dev. Biol., 2016, vol. 4, article 45. https://doi.org/10.3389/fcell.2016.00045

    Article  PubMed  PubMed Central  Google Scholar 

  23. Okino, S.T. and Whitlock, J.P., Jr., Dioxin induces localized, graded changes in chromatin structure: implications for Cyp1A1 gene transcription, Mol. Cell. Biol., 1995, vol. 15, no. 7, pp. 3714—3721. https://doi.org/10.1128/mcb.15.7.3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puga, A., Ma, C., and Marlowe, J.L., The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways, Biochem. Pharmacol., 2009, vol. 77, no. 4, pp. 713—722. https://doi.org/10.1016/j.bcp.2008.08.031

    Article  CAS  PubMed  Google Scholar 

  25. Sartor, M.A., Schnekenburger, M., Marlowe, J.L., et al., Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs, Environ. Health Perspect., 2009, vol. 117, no. 7, pp. 1139—1146. https://doi.org/10.1289/ehp.0800485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sycheva, L.P., Mozhaeva, T.E., Umnova, N.V., et al., Cytogenetic and other cariological parameters of exfoliative buccal cells in Vietnamese children from areas where dioxin-containing herbicides were applied, Vestn. Russ. Akad. Med. Nauk, 2008, no. 1, pp. 19—23.

  27. Sycheva, L.P., Umnova, N.V., Kovalenko, M.A., et al., Dioxins and cytogenetic status of villagers after 40 years of agent Orange application in Vietnam, Chemosphere, 2016, vol. 144, pp. 1415—1420. https://doi.org/10.1016/j.chemosphere.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  28. Rumak, V.S., Umnova, N.V., and Sofronov, G.A., Molecular and cellular aspects of dioxin toxicity, Vestn. Russ. Akad. Med. Nauk, 2014, nos. 3—4, pp. 77—84. https://doi.org/10.15690/vramn.v69.i3-4.1000

  29. Antwih, D.A., Gabbara, K.M., Lancaster, W.D., et al., Radiation-induced epigenetic DNA methylation modification of radiation-response pathways, Epigenetics, 2013, vol. 8, no. 8, pp. 839—848. https://doi.org/10.4161/epi.25498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuzmina, N.S., Lapteva, N.Sh., and Rubanovich, A.V., Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure, Environ. Res., 2016, no. 146, pp. 10—17. https://doi.org/10.1016/j.envres.2015.12.008

  31. Kuzmina, N.S., Lapteva, N.Sh., Rusinova, G.G., et al., Gene hypermethylation in blood leukocytes in humans long term after radiation exposure—validation set, Environ. Pollut., 2018, no. 234, pp. 935—942. https://doi.org/10.1016/j.envpol.2017.12.039

  32. Ruiz-Hernandez, A., Kuo, C.C., Rentero-Garrido, P., et al., Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence, Clin. Epigenet., 2015, vol. 7, no. 1, p. 55. https://doi.org/10.1186/s13148-015-0055-7

    Article  CAS  Google Scholar 

  33. Martin, E.M. and Fry, R.C., Environmental influences on the epigenome: exposure-associated DNA methylation in human populations, Annu. Rev. Public Health, 2018, vol. 39, pp. 309—333. https://doi.org/10.1146/annurev-publhealth-040617-014629

    Article  PubMed  Google Scholar 

  34. Horvath, S., DNA methylation age of human tissues and cell types, Genome Biol., 2013, vol. 14, no. 10, p. R115. https://doi.org/10.1186/gb-2013-14-10-r115

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hannum, G., Guinney, J., Zhao, L., et al., Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol. Cell, 2013, vol. 49, no. 2, pp. 359—367. https://doi.org/10.1016/j.molcel.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  36. Weidner, C.I., Lin, Q., Koch, C.M., et al., Aging of blood can be tracked by DNA methylation changes at just three CpG sites, Genome Biol., 2014, vol. 15, no. 2, p. R24. https://doi.org/10.1186/gb-2014-15-2-r24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vidal-Bralo, L., Lopez-Golan, Y., and Gonzale, A., Simplified assay for epigenetic age estimation in whole blood of adults, Front. Genet., 2016, vol. 7, p. 126. https://doi.org/10.3389/fgene.2016.00126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marioni, R.E., Shah, S., McRae, A.F., et al., The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936, Int. J. Epidemiol., 2015, vol. 44, no. 4, pp. 1388—1396. https://doi.org/10.1093/ije/dyu277

    Article  PubMed  PubMed Central  Google Scholar 

  39. Soriano-Tárraga, K., Giralt-Steinhauer, E., Mola-Caminal, M., et al., Ischemic stroke patients are biologically older than their chronological age, Aging, 2016, vol. 8, no. 11, pp. 2655—2666. https://doi.org/10.18632/aging.101028

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zampieri, M., Ciccarone, F., Calabrese, R., et al., Reconfiguration of DNA methylation in aging, Mech. Ageing Dev., 2015, vol. 151, pp. 60—70. https://doi.org/10.1016/j.mad.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  41. Van Otterdijk, S.D., Mathers, J.C., and Strathdee, G., Do age related changes in DNA methylation play a role in the development of age-related diseases?, Biochem. Soc. Transact., 2013, vol. 41, no. 3, pp. 803—807. https://doi.org/10.1042/BST20120358

    Article  CAS  Google Scholar 

  42. Flanagan, J.M., Munoz-Alegre, M., Henderson, S., et al., Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients, Hum. Mol. Genet., 2009, vol. 18, no. 7, pp. 1332—1342. https://doi.org/10.1093/hmg/ddp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Moundhri, M.S., Al-Nabhani, M., Tarantini, L., et al., The prognostic significance of whole blood global and specific DNA methylation levels in gastric adenocarcinoma, PLoS One, 2010, vol. 5, no. 12. e. 15585. https://doi.org/10.1371/journal.pone.0015585

  44. Tahara, T., Maegawa, S., and Chung, W., Examination of whole blood DNA methylation as a potential risk marker for gastric cancer, Cancer Prev. Res., 2013, vol. 6, no. 10, pp. 1093—1100. https://doi.org/10.1158/1940-6207.CAPR-13-0034

    Article  CAS  Google Scholar 

  45. Lakshmi Sana, V.V., Naushad, S.M., Reddy, C.A., et al., Oxidative stress in coronary artery disease: epigenetic perspective, Mol. Cell. Biochem., 2013, vol. 374, nos. 1—2, pp. 203—211. https://doi.org/10.1007/s11010-012-1520-7

    Article  CAS  PubMed  Google Scholar 

  46. Kim, G.H., Ryan, J.J., and Archer, S.L., The role of redox signaling in epigenetics and cardiovascular disease, Antioxid. Redox Signal., 2013, vol. 18, no. 15, pp. 1920—1936. https://doi.org/10.1089/ars.2012.4926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jones, P.A. and Takai, D., The role of DNA methylation in mammalian epigenetics, Science, 2001, vol. 293, no. 5532, pp. 1068—1070 https://doi.org/10.1126/science.1063852

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki, M.M. and Bird, A., DNA methylation landscapes: provocative insights from epigenomics, Nat. Rev., 2008, vol. 9, no. 6, pp. 465—476. https://doi.org/10.1038/nrg2341

    Article  CAS  Google Scholar 

  49. Jones, P.A., Functions of DNA methylation: islands, start sites, gene bodies and beyond, Nat. Rev., 2012, vol. 13, no. 7, pp. 484—492. https://doi.org/10.1038/nrg3230

    Article  CAS  Google Scholar 

  50. Pfeifer, G.P., Mutagenesis at methylated CpG sequences, Curr. Top Microbiol. Immunol., 2006, vol. 301, pp. 259—281. https://doi.org/10.1007/3-540-31390-7_10

    Article  CAS  PubMed  Google Scholar 

  51. Bird, A.P., DNA methylation and the frequency of CpG in animal DNA, Nucleic Acids Res., 1980, vol. 8, no. 7, pp. 1499—1504. https://doi.org/10.1093/nar/8.7.1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robertson, K.D. and Wolffe, A.P., DNA methylation in health and disease, Nat. Rev., 2000, vol. 1, no. 1, pp. 11—19. https://doi.org/10.1038/35049533

    Article  CAS  Google Scholar 

  53. Jaco, I., Canela, A., Vera, E., and Blasco, M.A., Centromere mitotic recombination in mammalian cells, J. Cell Biol., 2008, vol. 181, no. 6, pp. 885—892. https://doi.org/10.1083/jcb.200803042

    Article  PubMed  PubMed Central  Google Scholar 

  54. Blasco, M.A., The epigenetic regulation of mammalian telomeres, Nat. Rev., 2007, vol. 8, no. 4, pp. 299—309. https://doi.org/10.1038/nrg2047

    Article  CAS  Google Scholar 

  55. Tomso, D.J. and Bell, D.A., Sequence context at human single nucleotide polymorphisms: overrepresentation of CpG dinucleotide at polymorphic sites and suppression of variation in CpG islands, J. Mol. Biol., 2003, vol. 327, no. 2, pp. 303—308. https://doi.org/10.1016/s0022-2836(03)00120-7

    Article  CAS  PubMed  Google Scholar 

  56. Brandeis, M., Frank, D., Keshet, I., et al., Sp1 elements protect a CpG island from de novo methylation, Nature, 1994, vol. 371, no. 6496, pp. 435—438. https://doi.org/10.1038/371435a0

    Article  CAS  PubMed  Google Scholar 

  57. Maurano, M.T., Wang, H., Kutyavin, T., and Stamatoyannopoulos, J.A., Widespread site-dependent buffering of human regulatory polymorphism, PLoS Genet., 2012, vol. 8, no. 3. e1002599. https://doi.org/10.1371/journal.pgen.1002599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, I.G., Tomzynski, T.J., Ou, Q., and Hsieh, C.L., Modulation of DNA binding protein affinity directly affects target site demethylation, Mol. Cell Biol., 2000, vol. 20, no. 7, pp. 2343—2349. https://doi.org/10.1128/mcb.20.7.2343-2349.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stadler, M.B., Murr, R., Burger, L., et al., DNA-binding factors shape the mouse methylome at distal regulatory regions, Nature, 2011, vol. 480, no. 7378, pp. 490—495. https://doi.org/10.1038/nature10716

    Article  CAS  PubMed  Google Scholar 

  60. Thomson, J.P., Skene, P.J., Selfridge, J., et al., CpG islands influence chromatin structure via the CpG-binding protein Cfp1, Nature, 2010, vol. 464, no. 7291, pp. 1082—1086. https://doi.org/10.1038/nature08924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Illingworth, R.S. and Bird, A.P., CpG islands: a rough guide, FEBS Lett., 2009, vol. 583, no. 11, pp. 1713—1720. https://doi.org/10.1016/j.febslet.2009.04.012

    Article  CAS  PubMed  Google Scholar 

  62. Illingworth, R.S., Gruenewald-Schneider, U., Webb, S., et al., Orphan CpG islands identify numerous conserved promoters in the mammalian genome, PLoS Gen., 2010, vol. 6, no. 9. e1001134. https://doi.org/10.1371/journal.pgen.1001134

    Article  CAS  Google Scholar 

  63. Kulis, M., Queirós, A.C., Beekman, R., and Martín-Subero, J.I., Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer, Biochim. Biophys. Acta, 2013, vol. 1829, no. 11, pp. 1161—1174. https://doi.org/10.1016/j.bbagrm.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  64. Maunakea, A.K., Nagarajan, R.P., Bilenky, M., et al., Conserved role of intragenic DNA methylation in regulating alternative promoters, Nature, 2010, vol. 466, no. 7303, pp. 253—257. https://doi.org/10.1038/nature09165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Van Dongen, J., Nivard, M.G., Willemsen, G., et al., Genetic and environmental influences interact with age and sex in shaping the human methylome, Nat. Commun., 2016, vol. 7, p. 11115. https://doi.org/10.1038/ncomms11115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yuan, X., Qiu, L., Pu, Y., et al., Histone acetylation is involved in TCDD induced cleft palate formation in fetal mice, Mol. Med. Rep., 2016, vol. 14, no. 2, pp. 1139—1145. https://doi.org/10.3892/mmr.2016.5348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, C., Yuan, X.G., Liu, C.P., et al., Preliminary research on DNA methylation changes during murine palatogenesis induced by TCDD, J. Craniomaxillofac. Surg., 2017, vol. 45, no. 5, pp. 678—684. https://doi.org/10.1016/j.jcms.2017.02.004

    Article  PubMed  Google Scholar 

  68. Zhang, W., Zhou, S., Gao, Y., et al., Alterations in DNA methyltransferases and methyl-CpG binding domain proteins during cleft palate formation as induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice, Mol. Med. Rep., 2018, vol. 17, no. 4, pp. 5396—5401. https://doi.org/10.3892/mmr.2018.8521

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, X., Ji, M., Tan, X., et al., Role of epigenetic regulation of Igf2 and H19 in 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD)-induced ovarian toxicity in offspring rats, Toxicol. Lett., 2019, vol. 311, pp. 98—104. https://doi.org/10.1016/j.toxlet.2019.04.034

    Article  CAS  PubMed  Google Scholar 

  70. Ma, J., Chen, X., Liu, Y., et al., Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: methylation status and DNMTs, Toxicol. Appl. Pharmacol., 2015, vol. 289, no. 2, pp. 193—202. https://doi.org/10.1016/j.taap.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  71. Wu, Q., Ohsako, S., Ishimura, R., et al., Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2, Biol. Reprod., 2004, vol. 70, no. 6, pp. 1790—1797. https://doi.org/10.1095/biolreprod.103.025387

    Article  CAS  PubMed  Google Scholar 

  72. Bigey, P., Ramchandani, S., Theberge, J., et al., Transcriptional regulation of the human DNA methyltransferase (dnmt1) gene, Gene, 2000, vol. 242, nos. 1—2, pp. 407—418. https://doi.org/10.1016/s0378-1119(99)00501-6

    Article  CAS  PubMed  Google Scholar 

  73. Kishikawa, S., Murata, T., Kimura, H., et al., Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc-finger proteins, Eur. J. Biochem., 2002, vol. 269, no. 12, pp. 2961—2970. https://doi.org/10.1046/j.1432-1033.2002.02972.x

    Article  CAS  PubMed  Google Scholar 

  74. Ishida, C., Ura, K., Hirao, A., et al., Genomic organization and promoter analysis of the Dnmt3b gene, Gene, 2003, vol. 310, pp. 151—159. https://doi.org/10.1016/s0378-1119(03)00545-6

    Article  CAS  PubMed  Google Scholar 

  75. Worrad, D.M. and Schultz, R.M., Regulation of gene expression in the preimplantation mouse embryo: temporal and spatial patterns of expression of the transcription factor Sp1, Mol. Reprod. Dev., 1997, vol. 46, no. 3, pp. 268—277. https://doi.org/10.1002/(SICI)1098-2795(199703)46:3<268::AID-MRD5>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  76. Wu, Q., Ohsako, S., Baba, T., et al., Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on preimplantation mouse embryos, Toxicology, 2002, vol. 174, no. 2, pp. 119—129. https://doi.org/10.1016/s0300-483x(02)00047-1

    Article  CAS  PubMed  Google Scholar 

  77. Kobayashi, A., Sogawa, K., and Fujii-Kuriyama, Y., Cooperative interaction between AhR/Arnt and Sp1 for the drug-inducible expression of CYP1A1 gene, J. Biol. Chem., 1996, vol. 271, no. 21, pp. 12310—12316. https://doi.org/10.1074/jbc.271.21.12310

    Article  CAS  PubMed  Google Scholar 

  78. Nayyar, T., Zawia, N.H., and Hood, D.B., Transplacental effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the temporal modulation of Sp1 DNA binding in the developing cerebral cortex and cerebellum, Exp. Toxicol. Pathol., 2002, vol. 53, no. 6, pp. 461—468. https://doi.org/10.1078/0940-2993-00219

    Article  CAS  PubMed  Google Scholar 

  79. Ray, S.S. and Swanson, H.I., Dioxin-induced immortalization of normal human keratinocytes and silencing of p53 and p16INK4a, J. Biol. Chem., 2004, vol. 279, no. 26, pp. 27187—27193. https://doi.org/10.1074/jbc.M402771200

    Article  CAS  PubMed  Google Scholar 

  80. Papoutsis, A.J., Selmin, O.I., Borg, J.L., and Romagnolo, D.F., Gestational exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induces BRCA-1 promoter hypermethylation and reduces BRCA-1 expression in mammary tissue of rat offspring: preventive effects of resveratrol, Mol. Carcinog., 2015, vol. 54, no. 4, pp. 261—269. https://doi.org/10.1002/mc.22095

    Article  CAS  PubMed  Google Scholar 

  81. Singh, N.P., Singh, U.P., Singh, B., et al., Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis, PLoS One, 2011, vol. 6, no. 8. e23522. https://doi.org/10.1371/journal.pone.0023522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ding, T., McConaha, M., Boyd, K.L., et al., Developmental dioxin exposure of either parent is associated with an increased risk of preterm birth in adult mice, Reprod. Toxicol., 2011, vol. 31, no. 3, pp. 351—358. https://doi.org/10.1016/j.reprotox.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  83. Bruner-Tran, K.L. and Osteen, K.G., Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations, Reprod. Toxicol., 2011, vol. 31, no. 3, pp. 344—350. https://doi.org/10.1016/j.reprotox.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  84. Bruner-Tran, K.L., Ding, T., Yeoman, K.B., et al., Developmental exposure of mice to dioxin promotes transgenerational testicular inflammation and an increased risk of preterm birth in unexposed mating partners, PLoS One, 2014, vol. 9, no. 8. e105084. https://doi.org/10.1371/journal.pone.0105084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bidgoli, S.A., Karimi, M., Asami, Z., et al., Association between testicular Aryl hydrocarbon receptor levels and idiopathic male infertility: a case-control study in Iran, Sci. Total Environ., 2011, vol. 409, no. 18, pp. 3267—3273. https://doi.org/10.1016/j.scitotenv.2011.03.024

    Article  CAS  PubMed  Google Scholar 

  86. Ding, T., Mokshagundam, S., Rinaudo, P.F., et al., Paternal developmental toxicant exposure is associated with epigenetic modulation of sperm and placental Pgr and Igf2 in a mouse model, Biol. Reprod., 2018, vol. 99, no. 4, pp. 864—876. https://doi.org/10.1093/biolre/ioy111

    Article  PubMed  PubMed Central  Google Scholar 

  87. Manikkam, M., Tracey, R., Guerrero-Bosagna, C., and Skinner, M.K., Dioxin (TCDD) induces epigenetic transgenerational inheritance of adult onset disease and sperm epimutations, PLoS One, 2012, vol. 7, no. 9. e46249. https://doi.org/10.1371/journal.pone.0046249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Manikkam, M., Guerrero-Bosagna, C., Tracey, R., et al., Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures, PLoS One, 2012, vol. 7, no. 2. e31901. https://doi.org/10.1371/journal.pone.0031901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nilsson, E., Larsen, G., Manikkam, M., et al., Environmentally induced epigenetic transgenerational inheritance of ovarian disease, PLoS One, 2012, vol. 7, no. 5. e 36129. https://doi.org/10.1371/journal.pone.0036129

  90. Ishihara, K., Warita, K., Tanida, T., et al., Does paternal exposure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affect the sex ratio of offspring?, J. Vet. Med. Sci., 2007, vol. 69, no. 4, pp. 347—352. https://doi.org/10.1292/jvms.69.347

    Article  CAS  PubMed  Google Scholar 

  91. Ikeda, M., Tamura, M., Yamashita, J., et al., Repeated in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure affects male gonads in offspring, leading to sex ratio changes in F2 progeny, Toxicol. Appl. Pharmacol., 2005, vol. 206, no. 3, pp. 351—355. https://doi.org/10.1016/j.taap.2004.11.019

    Article  CAS  PubMed  Google Scholar 

  92. Baker, T.R., King-Heiden, T.C., Peterson, R.E., and Heideman, W., Dioxin induction of transgenerational inheritance of disease in zebrafish, Mol. Cell. Endocrinol., 2014, vol. 398, nos. 1—2, pp. 36—41. https://doi.org/10.1016/j.mce.2014.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. You, Y.A., Mohamed, E.A., Rahman, M.S., et al., 2,3,7,8-Tetrachlorodibenzo-p-dioxin can alter the sex ratio of embryos with decreased viability of Y spermatozoa in mice, Reprod. Toxicol., 2018, vol. 77, pp. 130—136. https://doi.org/10.1016/j.reprotox.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  94. Akemann, C., Meyer, D.N., Gurdziel, K., and Baker, T.R., Developmental dioxin exposure alters the methylome of adult male zebrafish gonads, Front. Genet., vol. 9, article 719. https://doi.org/10.3389/fgene.2018.00719

  95. McGaughey, D.M., Abaan, H.O., Miller, R.M., et al., Genomics of CpG methylation in developing and developed zebrafish, G3, 2014, vol. 4, no. 5, pp. 861—869. https://doi.org/10.1534/g3.113.009514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rusiecki, J.A., Baccarelli, A., Bollati, V., et al., Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit, Environ. Health Perspect., 2008, vol. 116, no. 11, pp. 1547—1552. https://doi.org/10.1289/ehp.11338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim, K.Y., Kim, D.S., Lee, S.K., et al., Association of low-dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans, Environ. Health Perspect., 2010, vol. 118, no. 3, pp. 370—374. https://doi.org/10.1289/ehp.0901131

    Article  CAS  PubMed  Google Scholar 

  98. Lind, L., Penell, J., Luttropp, K., et al., Global DNA hypermethylation is associated with high serum levels of persistent organic pollutants in an elderly population, Environ. Int., 2013, vol. 59, pp. 456—461. https://doi.org/10.1016/j.envint.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  99. Huen, K., Yousefi, P., Bradman, A., et al., Effects of age, sex, and persistent organic pollutants on DNA methylation in children, Environ. Mol. Mutagen., 2014, vol. 55, no. 3, pp. 209—222. https://doi.org/10.1002/em.21845

    Article  CAS  PubMed  Google Scholar 

  100. Yu, X., Zhao, B., Su, Ya., et al., Association of prenatal organochlorine pesticide dichlorodiphenyltrichloroethane exposure with fetal genome-wide DNA methylation, Life Sci., 2018, vol. 200, pp. 81—86. https://doi.org/10.1016/j.lfs.2018.03.030

    Article  CAS  PubMed  Google Scholar 

  101. Giuliani, C., Biggs, D. Nguyen, T.T., et al., First evidence of association between past environmental exposure to dioxin and DNA methylation of CYP1A1 and IGF2 genes in present day Vietnamese population, Env. Pol., 2018, vol. 242, part A, pp. 976—985. https://doi.org/10.1016/j.envpol.2018.07.015

  102. Simpkin, A.J., Hemani, G., Suderman, M., et al., Prenatal and early life influences on epigenetic age in children: a study of mother—offspring pairs from two cohort studies, Hum. Mol. Genet., 2016, vol. 25, no. 1, pp. 191—201. https://doi.org/10.1093/hmg/ddv456

    Article  CAS  PubMed  Google Scholar 

  103. Horvath, S. and Levin, A.J., HIV-1 infection accelerates age according to the epigenetic clock, J. Infect. Dis., 2015, vol. 212, no. 10, pp. 1563—1573. https://doi.org/10.1093/infdis/jiv277

    Article  PubMed  PubMed Central  Google Scholar 

  104. Horvath, S., Garagnani, P., Bacalini, M.G., et al., Accelerated epigenetic aging in Down syndrome, Aging Cell, 2015, vol. 14, no. 3, pp. 491—495. https://doi.org/10.1111/acel.12325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Horvath, S. and Ritz, B.R., Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients, Aging, 2015, vol. 7, no. 12, pp. 1130—1142. https://doi.org/10.18632/aging.100859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Levine, M.E., Lu, A.T., Chen, B.H., et al., Menopause accelerates biological aging, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 33, pp. 9327—9332. https://doi.org/10.1073/pnas.1604558113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Marioni, R.E., Shah, S., McRae, A.F., et al., DNA methylation age of blood predicts all-cause mortality in later life, Genome Biol., 2015, vol. 16, no. 1, pp. 25. https://doi.org/10.1186/s13059-015-0584-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zheng, Y., Joyce, B.T., Colicino, E., et al., Blood epigenetic age may predict cancer incidence and mortality, EBioMed, 2016, vol. 5, pp. 68—73. https://doi.org/10.1016/j.ebiom.2016.02.008

    Article  Google Scholar 

Download references

Funding

The study was partially carried out within the framework of the State Contract of the Ministry of Education and Science of the Russian Federation “Genetic Technologies in Biology, Medicine, Agricultural and Environmental Activity” (no. 0112-2019-0002), the subtopic “Environmental Genotoxicants and Antigenoxicants: Markers of Long-Term Exposure and Genetic Risks of Common Diseases.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kuzmina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any research involving humans as a subject.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmina, N.S., Luong, T.M. & Rubanovich, A.V. Changes in DNA Methylation Induced by Dioxins and Dioxin-Like Compounds as Potential Predictor of Disease Risk. Russ J Genet 56, 1180–1192 (2020). https://doi.org/10.1134/S1022795420100063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420100063

Keywords:

Navigation