Skip to main content
Log in

The Last Secret of Protein Folding: The Real Relationship Between Long-Range Interactions and Local Structures

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The protein folding problem has been extensively studied for decades, and hundreds of thousands of protein structures have been solved. Yet, how proteins fold from a linear peptide chain to their unique 3D structures is not fully understood. With key clues having emerged unexpectedly from the field of nanoscience, a “Confined Lowest Energy Fragment” (CLEF) hypothesis was proposed. The CLEF hypothesis states that a protein chain can be divided into CLEFs, the semi-independent folding units, by a small number of key residues that form key long-range interactions. The native structure of a CLEF is the lowest energy state under the constraints of the key long-range interactions, but the native structure of the whole protein is not necessary the lowest energy state as Anfinsen’s thermodynamic hypothesis suggested. The CLEF hypothesis proposes a unified CLEF mechanism for protein folding, basically a two-step process. In the first step, the favorable enthalpy of CLEFs for native structures quickly brings those residues for the key long-range interactions together, forming intermediates corresponding to the so-called hydrophobic collapse. In the second step, those collapsed key residues shuffle for the right combination to form the native key long-range interactions. The CLEF hypothesis provides a simple solution to all protein folding paradoxes, and proposes a “CLEF Age” or “Stone Age” for the prebiotic evolution of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kolata G (1986) Trying to crack the second half of the genetic code. Science 233:1037–1039

    Article  CAS  PubMed  Google Scholar 

  2. Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pauling L, Corey RB (1951) The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci USA 37:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tanaka S, Scheraga HA (1975) Model of protein folding: inclusion of short-, medium-, and long-range interactions. Proc Natl Acad Sci USA 72:3802–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao A, Sha Y, Lai L, Tang Y (1998) Influence of long-range interactions on α-helix formation. Protein Pept Lett 5:53–56

    CAS  Google Scholar 

  6. Wu H (1931) Studies on denaturation of proteins XIII. A theory of denaturation. Chin J Physiol 5:321–344

    CAS  Google Scholar 

  7. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  8. Anfinsen CB, Scheraga HA (1975) Experimental and theoretical aspects of protein folding. Adv Protein Chem 29:205–300

    Article  CAS  PubMed  Google Scholar 

  9. Levinthal C (1968) Are there pathways for protein folding. J Chim Phys 65:44–45

    Article  Google Scholar 

  10. Momany FA, McGuire RF, Burgess AW, Scheraga HA (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J Phys Chem 79:2361–2381

    Article  CAS  Google Scholar 

  11. Shipman LL, Burgess AW, Scheraga HA (1975) A new approach to empirical intermolecular and conformational potential energy functions. I. Description of model and derivation of parameters. Proc Natl Acad Sci USA 72:543–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burgess AW, Shipman LL, Scheraga HA (1975) A new approach to empirical intermolecular and conformational potential energy functions. II. Applications to crystal packing, rotational barriers, and conformational analysis. Proc Natl Acad Sci USA 72:854–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burgess AW, Scheraga HA (1975) Assessment of some problems associated with prediction of the three-dimensional structure of a protein from its amino-acid sequence. Proc Natl Acad Sci USA 72:1221–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  15. Mottonen J, Strand A, Symersky J, Sweet RM, Danley DE, Geoghegan KF, Gerard RD, Goldsmith EJ (1992) Structural basis of latency in plasminogen activator inhibitor-1. Nature 355:270–273

    Article  CAS  PubMed  Google Scholar 

  16. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang CH, Kissinger CR, Bailey RW, Griswold MD, Chiu M, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graphics Modell 19:26–59

    Article  CAS  Google Scholar 

  17. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  CAS  PubMed  Google Scholar 

  18. Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41:62–76

    Article  CAS  PubMed  Google Scholar 

  19. Freedman RB, Hirst TR, Tuite MF (1994) Protein disulfide-isomerase - building bridges in protein-folding. Trends Biochem Sci 19:331–336

    Article  CAS  PubMed  Google Scholar 

  20. Bothmann H, Pluckthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem 275:17100–17105

    Article  CAS  PubMed  Google Scholar 

  21. Kim DE, Blum B, Bradley P, Baker D (2009) Sampling bottlenecks in de novo protein structure prediction. J Mol Biol 393:249–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fraenkel AS (1993) Complexity of protein folding. Bull Math Biol 55:1199–1210

    Article  CAS  PubMed  Google Scholar 

  23. Guyeux C, Cote NML, Bahi JM, Bienia W (2014) Is protein folding problem really a NP-complete one? First investigations. J Bioinf Comput Biol 12:1350017

    Article  CAS  Google Scholar 

  24. Berger B, Leighton T (1998) Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. J Comput Biol 5:27–40

    Article  CAS  PubMed  Google Scholar 

  25. Faver JC, Benson ML, He X, Roberts BP, Wang B, Marshall MS, Merz Sherrill CD Jr (2011) The energy computation paradox and ab initio protein folding. PLoS ONE 6:e18868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046

    Article  CAS  PubMed  Google Scholar 

  27. Yan G-H, Wang K, Shao Z, Luo L, Song Z-M, Chen J, Jin R, Deng X, Wang H, Cao Z, Liu Y, Cao A (2018) Artificial antibody created by conformational reconstruction of the complementary-determining region on gold nanoparticle. Proc Natl Acad Sci USA 115:E34–E43

    CAS  PubMed  Google Scholar 

  28. Luo L, Liu Y-Y, Gao T, Wang X, Chen J, Wang H, Liu Y, Cao A (2020) Characterization of the specific interactions between nanoparticles and proteins at residue-resolution by alanine scanning mutagenesis. ACS Appl Mater Interfaces 12:34514–34523

    Article  CAS  PubMed  Google Scholar 

  29. Cao A (2020) “Confined lowest energy structure fragments (CLESFs)” hypothesis for protein structure and the “Stone Age” of protein prebiotic evolution. Acta Phys Chim Sin 36:1907002

    Article  CAS  Google Scholar 

  30. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  CAS  PubMed  Google Scholar 

  31. Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 86:10029–10033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harper JW, Vallee BL (1989) A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis. Biochemistry 28:1875–1884

    Article  CAS  PubMed  Google Scholar 

  33. Raines RT, Toscano MP, Nierengarten DM, Ha JH, Auerbach R (1995) Replacing a surface loop endows ribonuclease A with angiogenic activity. J Biol Chem 270:17180–17184

    Article  CAS  PubMed  Google Scholar 

  34. Kiss C, Fisher H, Pesavento E, Dai M, Valero R, Ovecka M, Nolan R, Phipps ML, Velappan N, Chasteen L, Martinez JS, Waldo GS, Pavlik P, Bradbury ARM (2006) Antibody binding loop insertions as diversity elements. Nucleic Acids Res 34:e132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Skerra A (2015) Engineered protein scaffolds for molecular recognition. J Mol Recognit 13:167–187

    Article  Google Scholar 

  36. Yu M, Bovet N, Satterley CJ, Bengio S, Lovelock KRJ, Milligan PK, Jones RG, Woodruff DP, Dhanak V (2006) True nature of an archetypal self-assembly system: mobile Au-thiolate species on Au(111). Phys Rev Lett 97:166102

    Article  PubMed  CAS  Google Scholar 

  37. Biener MM, Biener J, Friend CM (2007) Sulfur-induced mobilization of Au surface atoms on Au (111) studied by real-time STM. Surf Sci 601:1659–1667

    Article  CAS  Google Scholar 

  38. Maksymovych P, Voznyy O, Dougherty DB, Sorescu DC, Yates JT (2010) Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Prog Surf Sci 85:206–240

    Article  CAS  Google Scholar 

  39. Cossaro A, Mazzarello R, Rousseau R, Casalis L, Verdini A, Kohlmeyer A, Floreano L, Scandolo S, Morgante A, Klein ML, Scoles G (2008) X-ray diffraction and computation yield the structure of alkanethiols on gold(111). Science 321:943–946

    Article  CAS  PubMed  Google Scholar 

  40. Peng Z-Y, Wu LC (2000) Autonomous protein folding units. Adv Protein Chem 53:1–47

    Article  CAS  PubMed  Google Scholar 

  41. Kobe B, Deisenhofer J (1996) Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. J Mol Biol 264:1028–1043

    Article  CAS  PubMed  Google Scholar 

  42. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wüthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–231). Nature 382:180–182

    Article  CAS  PubMed  Google Scholar 

  43. Cao A, Ye Z, Cai Z, Dong E, Yang X, Liu G, Deng X, Wang Y, Yang S-T, Wang H, Wu M, Liu Y (2010) A facile method to encapsulate proteins in silica nanoparticles: encapsulated green fluorescent protein as a robust fluorescence probe. Angew Chim Int Ed 49:3022–3025

    Article  CAS  Google Scholar 

  44. Liu Y, Cao A (2017) Encapsulating proteins in nanoparticles: batch by batch or one by one. Meth Enzymol 590:1–31

    Article  CAS  Google Scholar 

  45. Liu Y, Song Z-M, Deng X, Cui Y, Yang Y-F, Han K, Jin R, Wang H, Liu Y, Cao A (2015) Chitosan-coated red fluorescent protein nanoparticle as a potential dual-functional siRNA carrier. Nanomedicine (Lond) 10:2005–2016

    Article  CAS  Google Scholar 

  46. Yang S-T, Liu Y, Wang Y-W, Cao A (2013) Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. Small 9:1635–1653

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y, Xiang K, Yang Y-X, Wang Y-W, Zhang X, Cui Y, Wang H, Zhu Q, Fan L, Liu Y, Cao A (2013) Individually-coated near-infrared fluorescent protein as a safe and robust nanoprobe for in vivo imaging. Nanoscale 5:10345–10352

    Article  CAS  PubMed  Google Scholar 

  48. Cai Z, Ye Z, Yang X, Chang Y, Wang H, Liu Y, Cao A (2011) Encapsulated enhanced green fluorescence protein in silica nanoparticle for cellular imaging. Nanoscale 3:1974–1976

    Article  CAS  PubMed  Google Scholar 

  49. Yang X, Cai Z, Ye Z, Chen S, Yang Y, Wang H, Cao A (2012) In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes. Nanoscale 4:414–416

    Article  CAS  PubMed  Google Scholar 

  50. Cao Y, Cui Y, Yang Y, Hua J, Song Z-M, Wang H, Liu Y, Cao A (2018) Silica nanoparticle with a single His-tag for addressable functionalization, reversible assembly, and recycling. Nano Res 11:2512–2522

    Article  CAS  Google Scholar 

  51. Baldwin RL (1989) How does protein folding get started? Trends Biochem Sci 14:291–294

    Article  CAS  PubMed  Google Scholar 

  52. Daggett V, Fersht AR (2003) Is there a unifying mechanism for protein folding? Trends Biochem Sci 128:18–25

    Article  Google Scholar 

  53. Radford SE (2000) Protein folding: progress made and promises ahead. Trends Biochem Sci 25:611–618

    Article  CAS  PubMed  Google Scholar 

  54. Gianni S, Jemth P (2016) Protein folding: vexing debates on a fundamental problem. Biophys Chem 212:17–21

    Article  CAS  PubMed  Google Scholar 

  55. Kim PS, Baldwin RL (1982) Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem 51:459–489

    Article  CAS  PubMed  Google Scholar 

  56. Kim PS, Baldwin RL (1990) Intermediates in the folding reactions of small proteins. Annu Rev Biochem 59:631–660

    Article  CAS  PubMed  Google Scholar 

  57. Ptitsyn OB, Rashin AA (1975) A model of myoglobin selforganization. Biophys Chem 3:1–20

    Article  CAS  PubMed  Google Scholar 

  58. Schellman JA (1955) The stability of hydrogen-bonded peptide structures in aqueous solution. Compt Rend Lab Carlsberg Ser Chim 29:230–259

    CAS  Google Scholar 

  59. Tanford C (1962) Contribution of hydrophobic interactions to the stability of globular confirmation of proteins. J Am Chem Soc 84:4240–4247

    Article  CAS  Google Scholar 

  60. Thirumalai D, Samanta HS, Maity H, Reddy G (2019) Universal nature of collapsibility in the context of protein folding and evolution. Trends Biochem Sci 44:675–687

    Article  CAS  PubMed  Google Scholar 

  61. Haran G (2012) How, when and why proteins collapse: the relation to folding. Curr Opin Struct Biol 22:14–20

    Article  CAS  PubMed  Google Scholar 

  62. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    Article  CAS  PubMed  Google Scholar 

  63. Jackson SE (1998) How do small single-domain proteins fold? Folding Des 3:R81–R91

    Article  CAS  Google Scholar 

  64. Šali A, Shakhnovich E, Karplus M (1994) How does a protein fold? Nature 369:248–251

    Article  PubMed  Google Scholar 

  65. Ozkan SB, Wu GA, Chodera JD, Dill KA (2007) Protein folding by zipping and assembly. Proc Natl Acad Sci USA 104:11987–11992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Voelz VA, Dill KA (2007) Exploring zipping and assembly as a protein folding principle. Proteins Struct Funct Bioinf 66:877–888

    Article  CAS  Google Scholar 

  67. Wildegger G, Liemann S, Glockshuber R (1999) Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates. Nat Struct Biol 6:550–553

    Article  CAS  PubMed  Google Scholar 

  68. Miburn PJ, Scheraga HA (1988) Local interactions favor the native 8-residue disulfide loop in the oxidation of a fragment corresponding to the sequence ser-50-met-79 derived from bovine pancreatic ribonuclease A. J Protein Chem 7:377–398

    Article  Google Scholar 

  69. Shortle D, Ackerman MS (2001) Persistence of native-like topology in a denatured protein in 8 M urea. Science 293:487–489

    Article  CAS  PubMed  Google Scholar 

  70. Epstein CJ, Goldberger RF, Anfinsen CB (1963) The genetic control of tertiary protein structure: studies with model systems. Cold Spring Harbor Symp Quant Biol 28:439–449

    Article  CAS  Google Scholar 

  71. Narayan M, Welker E, Wedemeyer WJ, Scheraga HA (2000) Oxidative folding of proteins. Acc Chem Res 33:805–812

    Article  CAS  PubMed  Google Scholar 

  72. Cao A, Welker E, Scheraga HA (2001) Effect of mutation of proline 93 on redox unfolding/folding of bovine pancreatic ribonuclease A. Biochemistry 40:8536–8541

    Article  CAS  PubMed  Google Scholar 

  73. Kung YT, Du YC, Huang WT, Chen CC, Ke LT (1966) Total synthesis of crystalline insulin. Sci Sin 15:544–561

    CAS  PubMed  Google Scholar 

  74. Meienhofer J, Schnabel E, Bremer H, Brinkhoff O, Zabel R, Sroka W, Klostermayer H, Brandenburg D, Okuda T, Zahn H (1963) Synthese der insulinketten und ihre kombination zu insulinaktiven praeparaten. Z Naturforsch B 18:1120–1121

    Article  CAS  PubMed  Google Scholar 

  75. Katsoyannis PG, Tometsko A (1966) Insulin synthesis by recombination of A and B chains: a highly efficient method. Proc Natl Acad Sci USA 55:1554–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qiao Z-S, Min C-Y, Hua Q-X, Weiss M-A, Feng Y-M (2003) In vitro refolding of human proinsulin kinetic intermediates, putative disulfide-forming pathway, folding initiation site, and potential role of C-peptide in folding process. J Biol Chem 278:17800–17809

    Article  CAS  PubMed  Google Scholar 

  77. Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19

    Article  CAS  PubMed  Google Scholar 

  78. Ben-Naim A (2012) Levinthal’s question revisited, and answered. J Biomol Struct Dyn 30:113–134

    Article  CAS  PubMed  Google Scholar 

  79. Zwanzig R, Szabo A, Bagchi B (1992) Levinthal’s paradox. Proc Natl Acad Sci USA 89:20–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brygelson JD, Wolynes PG (1987) Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci USA 84:7524–7528

    Article  Google Scholar 

  81. Wolynes PG (2015) Evolution, energy landscapes and the paradoxes of protein folding. Biochimie 119:218–230

    Article  CAS  PubMed  Google Scholar 

  82. Leopold PE, Montal M, Onuchic JN (1992) Protein folding funnels - A kinetic approach to the sequence structure relationship. Proc Natl Acad Sci USA 89:8721–8725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jones DT (1997) Successful ab initio prediction of the tertiary structure of NK-lysin using multiple sequences and recognized supersecondary structural motifs. Proteins S1:185–191

    Article  Google Scholar 

  84. Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268:209–225

    Article  CAS  PubMed  Google Scholar 

  85. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  86. Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, Lazcano A, Bada JL (2011) Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci USA 108:5526–5531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I had the privilege of working as a postdoc in Professor Harold Scheraga’s lab at Cornell University during 1998–2000, and Harold’s unswerving devotion to science and rigorous handling of research have a major influence on my career. This work was supported by the Natural Science Foundation of China (Nos. 31871007, 22071145 and 31571024) and the National Basic Research Plan of China (2016YFA0201600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aoneng Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, A. The Last Secret of Protein Folding: The Real Relationship Between Long-Range Interactions and Local Structures. Protein J 39, 422–433 (2020). https://doi.org/10.1007/s10930-020-09925-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09925-w

Keywords

Navigation