Skip to main content

Advertisement

Log in

Biophysical and In-Silico Studies of Phytochemicals Targeting Chorismate Synthase from Drug-Resistant Moraxella Catarrhalis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Chorismate serves as a crucial precursor for the synthesis of many aromatic compounds essential for the survival and virulence in various bacteria and protozoans. Chorismate synthase, a vital enzyme in the shikimate pathway, is responsible for the formation of chorismate from enolpyruvylshikimate-3-phosphate (EPSP). Moraxella catarrhalis is reported to be resistant to many beta-lactam antibiotics and causes chronic ailments such as otitis media, sinusitis, laryngitis, and bronchopulmonary infections. Here, we have cloned the aroC gene from Moraxella catarrhalis in pET28c and heterologously produced the chorismate synthase (~ 43 kDa) in Escherichia coli BL21(DE3) cells. We have predicted the three-dimensional structure of this enzyme and used the refined model for ligand-based virtual screening against Supernatural Database using PyRx tool that led to the identification of the top three molecules (caffeic acid, gallic acid, and o-coumaric acid). The resultant protein–ligand complex structures were subjected to 50 ns molecular dynamics (MD) simulation using GROMACS. Further, the binding energy was calculated by MM/PBSA approach using the trajectory obtained from MD simulation. The binding affinities of these compounds were validated with ITC experiments, which suggest that gallic acid has the highest binding affinity amongst these three phytochemicals. Together, these results pave the way for the use of these phytochemicals as potential anti-bacterial compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Enright MC, McKenzie H (1997) Moraxella (Branhamella) catarrhalis—clinical and molecular aspects of a rediscovered pathogen. J Med Microbiol 46:360–371. https://doi.org/10.1099/00222615-46-5-360

    Article  CAS  PubMed  Google Scholar 

  2. Hager H, Verghese A, Alvarez S, Berk SL (1987) Branhamella catarrhalis respiratory infections. Clin Infect Dis 9:1140–1149. https://doi.org/10.1093/clinids/9.6.1140

    Article  CAS  Google Scholar 

  3. Murphy TF, Parameswaran GI (2009) Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis 49:124–131. https://doi.org/10.1086/599375

    Article  PubMed  Google Scholar 

  4. Faden H, Duffy L, Wasielewski R et al (1997) Relationship between nasopharyngeal colonization and the development of otitis media in children. J Infect Dis 175:1440–1445. https://doi.org/10.1086/516477

    Article  CAS  PubMed  Google Scholar 

  5. Hendley JO, Hayden FG, Winther B (2005) Weekly point prevalence of Streptococcus pneumoniae, Hemophilus influenzae and Moraxella catarrhalis in the upper airways of normal young children: effect of respiratory illness and season. APMIS 113:213–220. https://doi.org/10.1111/j.1600-0463.2005.apm1130310.x

    Article  PubMed  Google Scholar 

  6. Karalus R, Campagnari A (2000) Moraxella catarrhalis: a review of an important human mucosal pathogen. Microbes Infect 2:547–559. https://doi.org/10.1016/S1286-4579(00)00314-2

    Article  CAS  PubMed  Google Scholar 

  7. Dev A, Tapas S, Pratap S, Kumar P (2012) Structure and function of enzymes of shikimate pathway. CurrBioinform 7:374–391. https://doi.org/10.2174/157489312803900983

    Article  CAS  Google Scholar 

  8. Tapas S, Kumar A, Dhindwal S et al (2011) Structural analysis of chorismate synthase from Plasmodium falciparum: a novel target for antimalaria drug discovery. Int J Biol Macromol 49:767–777. https://doi.org/10.1016/j.ijbiomac.2011.07.011

    Article  CAS  PubMed  Google Scholar 

  9. Sharma A, Kumar V, Chatrath A et al (2018) In vitro metal catalyzed oxidative stress in DAH7PS: methionine modification leads to structure destabilization and induce amorphous aggregation. Int J Biol Macromol 106:1089–1106. https://doi.org/10.1016/j.ijbiomac.2017.08.105

    Article  CAS  PubMed  Google Scholar 

  10. Coggins JR, Abell C, Evans LB et al (2003) Experiences with the shikimate-pathway enzymes as targets for rational drug design. Biochem Soc Trans 31:5

    Article  Google Scholar 

  11. Baek S-H, Rajashekara G, Splitter GA, Shapleigh JP (2004) Denitrification genes regulate brucella virulence in mice. J Bacteriol 186:6025–6031. https://doi.org/10.1128/JB.186.18.6025-6031.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahn HJ, Yoon H-J, Lee BI, Suh SW (2004) Crystal structure of chorismate synthase: a novel FMN-binding protein fold and functional insights. J Mol Biol 336:903–915. https://doi.org/10.1016/j.jmb.2003.12.072

    Article  CAS  PubMed  Google Scholar 

  13. Chook YM, Ke H, Lipscomb WN (1993) Crystal structures of the monofunctional chorismate mutase from Bacillus subtilis and its complex with a transition state analog. Proc Natl Acad Sci 90:8600–8603. https://doi.org/10.1073/pnas.90.18.8600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quevillon-Cheruel S, Leulliot N, Meyer P et al (2004) Crystal structure of the bifunctional chorismate synthase from Saccharomyces cerevisiae. J Biol Chem 279:619–625. https://doi.org/10.1074/jbc.M310380200

    Article  CAS  PubMed  Google Scholar 

  15. Koh M, Nasertorabi F, Han GW et al (2017) Generation of an orthogonal protein-protein interface with a noncanonical amino acid. J Am Chem Soc 139:5728–5731. https://doi.org/10.1021/jacs.7b02273

    Article  CAS  PubMed  Google Scholar 

  16. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  17. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. CurrProtocBioinform. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  18. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  19. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  20. Colovos C, Yeates TO (1993) Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510–W514. https://doi.org/10.1093/nar/gkp322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benkert P, Tosatto SCE, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins StructFunctBioinform 71:261–277. https://doi.org/10.1002/prot.21715

    Article  CAS  Google Scholar 

  23. Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229. https://doi.org/10.1093/nar/gkq1189

    Article  CAS  PubMed  Google Scholar 

  24. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gouet P, Courcelle E, Stuart D, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308. https://doi.org/10.1093/bioinformatics/15.4.305

    Article  CAS  PubMed  Google Scholar 

  26. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. In: Hempel JE, Williams CH, Hong CC (eds) Chemical biology. Springer, New York, pp 243–250

    Google Scholar 

  27. Dunkel M (2006) SuperNatural: a searchable database of available natural compounds. Nucleic Acids Res 34:D678–D683. https://doi.org/10.1093/nar/gkj132

    Article  CAS  PubMed  Google Scholar 

  28. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  29. van Aalten DMF, Bywater R, Findlay JBC et al (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262. https://doi.org/10.1007/BF00355047

    Article  PubMed  Google Scholar 

  30. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fernandes CL, Santos DS, Basso LA, de Souza ON (2005) Structure prediction and docking studies of chorismate synthase from mycobacterium tuberculosis. In: Setubal JC, Verjovski-Almeida S (eds) Advances in bioinformatics and computational biology. Springer, Berlin, pp 118–127

    Chapter  Google Scholar 

  32. Singh S, Qureshi IA (2020) Identification and validation of novel inhibitor against chorismate synthase of toxoplasma gondii. Social Science Research Network, Rochester

    Google Scholar 

  33. Rodrigues-Vendramini FAV, Marschalk C, Toplak M et al (2018) Promising new antifungal treatment targeting chorismate synthase from Paracoccidioides brasiliensis. Antimicrob Agents Chemother 63:e01097-18. https://doi.org/10.1128/AAC.01097-18

    Article  PubMed  PubMed Central  Google Scholar 

  34. Arcuri HA, Palma MS (2011) Understanding the structure, activity and inhibition of chorismate synthase from Mycobacterium tuberculosis. Curr Med Chem 18:1311–1317. https://doi.org/10.2174/092986711795029528

    Article  CAS  PubMed  Google Scholar 

  35. Thomas MG, Lawson C, Allanson NM et al (2003) A series of 2(Z)-2-benzylidene-6,7-dihydroxybenzofuran-3[2H]-ones as inhibitors of chorismate synthase. Bioorg Med Chem Lett 13:423–426. https://doi.org/10.1016/S0960-894X(02)00957-5

    Article  CAS  PubMed  Google Scholar 

  36. Pitchandi P, Hopper W, Rao R (2013) Comprehensive database of chorismate synthase enzyme from shikimate pathway in pathogenic bacteria. BMC Pharmacol Toxicol 14:29. https://doi.org/10.1186/2050-6511-14-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  38. Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165. https://doi.org/10.1126/science.1168243

    Article  CAS  PubMed  Google Scholar 

  39. Wang H (2004) Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 87:307–311. https://doi.org/10.1016/j.foodchem.2003.12.029

    Article  CAS  Google Scholar 

  40. Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53:7749–7759. https://doi.org/10.1021/jf051513y

    Article  CAS  PubMed  Google Scholar 

  41. Al-Farsi M, Alasalvar C, Morris A et al (2005) Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53:7592–7599. https://doi.org/10.1021/jf050579q

    Article  CAS  PubMed  Google Scholar 

  42. Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51:502–509. https://doi.org/10.1021/jf020728u

    Article  CAS  PubMed  Google Scholar 

  43. Hashmi MA, Khan A, Hanif M et al (2015) Traditional uses, phytochemistry, and pharmacology of Olea europaea (Olive). Evid Based Complement Alternat Med 2015:541591. https://doi.org/10.1155/2015/541591

    Article  PubMed  PubMed Central  Google Scholar 

  44. Magnani C, Isaac VLB, Correa MA, Salgado HRN (2014) Caffeic acid: a review of its potential use in medications and cosmetics. Anal Methods 6:3203–3210. https://doi.org/10.1039/C3AY41807C

    Article  CAS  Google Scholar 

  45. Espíndola KMM, Ferreira RG, Narvaez LEM et al (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol 9:541. https://doi.org/10.3389/fonc.2019.00541

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alves MJ, Ferreira ICFR, Froufe HJC et al (2013) Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J Appl Microbiol 115:346–357. https://doi.org/10.1111/jam.12196

    Article  CAS  PubMed  Google Scholar 

  47. Choubey S, Varughese LR, Kumar V, Beniwal V (2015) Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm Pat Anal 4:305–315. https://doi.org/10.4155/ppa.15.14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NN thanks to CSIR, MS, thanks to MHRD; JKM, thanks to DBT for providing financial assistance. The authors also thank the Macromolecular Crystallographic Facility (MCU) at IIC, Indian Institute of Technology Roorkee, for using the facility to carry out experiments.

Funding

This work was supported by a grant from the Science and Engineering Research Board (SERB), India (Project No. CRG/2018/001022).

Author information

Authors and Affiliations

Authors

Contributions

NN, MS, and PK designed the study. NN, MS, JKM performed the cloning, expression, purification, and biophysical experiments. MS, JKM performed in-silico studies and analysis. NN, MS, JKM, and PK wrote the manuscript. All the authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Pravindra Kumar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest/competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neetu, N., Sharma, M., Mahto, J.K. et al. Biophysical and In-Silico Studies of Phytochemicals Targeting Chorismate Synthase from Drug-Resistant Moraxella Catarrhalis. Protein J 39, 449–460 (2020). https://doi.org/10.1007/s10930-020-09923-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09923-y

Keywords

Navigation