Skip to main content
Log in

Trehalose Inhibits the Heat-Induced Formation of the Amyloid-Like Structure of Soluble Proteins Isolated from Human Cataract Lens

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The age-dependent loss of solubility and aggregation of crystallins constitute the pathological hallmarks of cataract. Several biochemical and biophysical factors are responsible for the reduction of crystallins’ solubility and formation of irreversible protein aggregates, which display amyloid-like characteristics. The present study reports the heat-induced aggregation of soluble proteins isolated from human cataract lenses and the formation of amyloid-like structures. Exposure of protein at 55 °C for 4 h resulted in extensive (≈ 60%) protein aggregation. The heat-induced protein aggregates displayed substantial (≈ 20 nm) redshift in the wavelength of maximum absorption (λmax) of Congo red (CR) and increase in Thioflavin T (ThT) fluorescence emission intensity, indicating the presence of amyloid-like structures in the heat-induced protein aggregates. Subsequently, the addition of trehalose resulted in substantial inhibition of heat-induced aggregation and the formation of amyloid-like structure. The ability of trehalose to inhibit the heat-induced aggregation was found to be linearly dependent upon its concentration used. The optimum effect was observed in the presence of 30–40% (w/v) trehalose where the aggregated was found to be reduced from 60 to 30%. The present study demonstrated the ability to trehalose to inhibit the protein aggregation and interfere with the formation of amyloid-like structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lam D, Rao SK, Ratra V, Liu Y, Mitchell P, King J, Tassignon M-J, Jonas J, Pang CP, Chang DF (2015) Cataract. Nat Rev Dis Primers 1:15014. https://doi.org/10.1038/nrdp.2015.14

    Article  PubMed  Google Scholar 

  2. Bron AJ, Vrensen GF, Koretz J, Maraini G, Harding JJ (2000) The ageing lens. Int J Ophthalmol 214(1):86–104. https://doi.org/10.1159/000027475

    Article  CAS  Google Scholar 

  3. Hu R, Zhang M, Chen H, Jiang B, Zheng J (2015) Cross-seeding interaction between beta-amyloid and human islet amyloid polypeptide. ACS Chem Neurosci 6(10):1759–1768. https://doi.org/10.1021/acschemneuro.5b00192

    Article  CAS  PubMed  Google Scholar 

  4. Yata K, Fujiwara T, Yamamoto A, Ito K, Tsuyama Y (1990) Diabetes as risk factor of cataract: differentiation by retroillumination photography and image analysis. Ophthalmic Res 22(Suppl 1):78–80. doi:https://doi.org/10.1159/000267071

    Article  PubMed  Google Scholar 

  5. Reddy VS, Reddy GB (2016) Role of crystallins in diabetic complications. Biochim Biophys Acta 1:269–277. https://doi.org/10.1016/j.bbagen.2015.05.009

    Article  CAS  Google Scholar 

  6. Moreau KL, King JA (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 18(5):273–282. doi:https://doi.org/10.1016/j.molmed.2012.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagar AM, Luis J, Kainth N, Panos GD, McKechnie CJ, Patra S (2020) The Risk of posterior capsule rupture during phacoemulsification cataract surgery in eyes with previous intravitreal anti vascular endothelial growth factor injections. J Cataract Refract Surg. https://doi.org/10.1097/j.jcrs.0000000000000047

    Article  PubMed  Google Scholar 

  8. Campbell RJ, El-Defrawy SR, Gill SS, Whitehead M, Campbell ELP, Hooper PL, Bell CM, Ten Hove MW (2019) Evolution in the risk of cataract surgical complications among patients exposed to tamsulosin: a population-based study. Ophthalmology 126(4):490–496. https://doi.org/10.1016/j.ophtha.2018.11.028

    Article  PubMed  Google Scholar 

  9. Belin PJ, Parke DW III (2020) Complications of vitreoretinal surgery. Curr Opin Ophthalmol 31(3):167–173. doi:https://doi.org/10.1097/ICU.0000000000000652

    Article  PubMed  Google Scholar 

  10. Yousefi R, Javadi S, Amirghofran S, Oryan A, Moosavi-Movahedi AA (2016) Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: the pathomechanisms underlying cataract development in diabetic patients. Int J Biol Macromol 82:328–338. https://doi.org/10.1016/j.ijbiomac.2015.10.036

    Article  CAS  PubMed  Google Scholar 

  11. Tholozan FM, Quinlan RA (2007) Lens cells: more than meets the eye. Int J Biochem Cell Biol 39(10):1754–1759. doi:https://doi.org/10.1016/j.biocel.2007.06.021

    Article  CAS  PubMed  Google Scholar 

  12. Swamy MS, Abraham EC (1987) Lens protein composition, glycation and high molecular weight aggregation in aging rats. Investig Ophthalmol Vis Sci 28(10):1693–1701

    CAS  Google Scholar 

  13. Sharma KK, Santhoshkumar P (2009) Lens aging: effects of crystallins. Biochim Biophys Acta 1790(10):1095–1108. https://doi.org/10.1016/j.bbagen.2009.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slingsby C, Clout NJ (1999) Structure of the crystallins. Eye 13(3b):395–402. https://doi.org/10.1038/eye.1999.113

    Article  PubMed  Google Scholar 

  15. Selivanova OM, Galzitskaya OV (2020) Structural and functional peculiarities of alpha-crystallin. Biology. https://doi.org/10.3390/biology9040085

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wilmarth PA, Tanner S, Dasari S, Nagalla SR, Riviere MA, Bafna V, Pevzner PA, David LL (2006) Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J Proteome Res 5(10):2554–2566. doi:https://doi.org/10.1021/pr050473a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yousefi R, Khazaei S, Moosavi-Movahedi AA (2013) Effect of homocysteinylation on structure, chaperone activity and fibrillation propensity of lens alpha-crystallin. Protein Pept Lett 20(8):932–941. doi:https://doi.org/10.2174/0929866511320080011

    Article  CAS  PubMed  Google Scholar 

  18. Zhao H, Hu S, Ren X, Yang J, Sun L (1995) Change of water-soluble-protein, urea-soluble-protein and membrane intrinsic protein in human senile cataract. Eye Sci 11(3):124–127

    CAS  Google Scholar 

  19. Srivastava OP, Srivastava K, Chaves JM, Gill AK (2017) Post-translationally modified human lens crystallin fragments show aggregation in vitro. Biochem Biophys Rep 10:94–131. https://doi.org/10.1016/j.bbrep.2017.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kannan R, Raju M, Sharma KK (2014) The critical role of the central hydrophobic core (residues 71–77) of amyloid-forming alphaA66-80 peptide in alpha-crystallin aggregation: a systematic proline replacement study. Amyloid 21(2):103–109. https://doi.org/10.3109/13506129.2014.888994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lund AL, Smith JB, Smith DL (1996) Modifications of the water-insoluble human lens alpha-crystallins. Exp Eye Res 63(6):661–672. doi:https://doi.org/10.1006/exer.1996.0160

    Article  CAS  PubMed  Google Scholar 

  22. Santhoshkumar P, Udupa P, Murugesan R, Sharma KK (2008) Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation. J Biol Chem 283(13):8477–8485. doi:https://doi.org/10.1074/jbc.M705876200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rao PV, Huang QL, Horwitz J, Zigler JS Jr (1995) Evidence that alpha-crystallin prevents non-specific protein aggregation in the intact eye lens. Biochim Biophys Acta 1245(3):439–447

    Article  Google Scholar 

  24. Pigaga V, Quinlan RA (2006) Lenticular chaperones suppress the aggregation of the cataract-causing mutant T5P gamma C-crystallin. Exp Cell Res 312(1):51–62. https://doi.org/10.1016/j.yexcr.2005.09.014

    Article  CAS  PubMed  Google Scholar 

  25. Kashani MR, Yousefi R, Akbarian M, Alavianmehr MM, Ghasemi Y (2016) Structure, chaperone activity, and aggregation of wild-type and r12c mutant alphab-crystallins in the presence of thermal stress and calcium ion: implications for role of calcium in cataract pathogenesis. Biochem Biokhim 81(2):122–134. https://doi.org/10.1134/S0006297916020061

    Article  CAS  Google Scholar 

  26. Zhang TO, Alperstein AM, Zanni MT (2017) Amyloid beta-sheet secondary structure identified in UV-induced cataracts of porcine lenses using 2D IR spectroscopy. J Mol Biol 429(11):1705–1721. https://doi.org/10.1016/j.jmb.2017.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Petty S, Trojanowski A, Knee K, Goulet D, Mukerji I, King J (2010) Formation of amyloid fibrils in vitro from partially unfolded intermediates of human gammaC-crystallin. Investig Ophthalmol Vis Sci 51(2):672–678. doi:https://doi.org/10.1167/iovs.09-3987

    Article  Google Scholar 

  28. Garvey M, Ecroyd H, Ray NJ, Gerrard JA, Carver JA (2017) Functional amyloid protection in the eye lens: retention of alpha-crystallin molecular chaperone activity after modification into amyloid fibrils. Biomolecules. https://doi.org/10.3390/biom7030067

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ecroyd H, Carver JA (2009) Crystallin proteins and amyloid fibrils. Cell Mol Life Sci 66(1):62–81. doi:https://doi.org/10.1007/s00018-008-8327-4

    Article  CAS  PubMed  Google Scholar 

  30. Clark JI (2013) Self-assembly of protein aggregates in ageing disorders: the lens and cataract model. Philos Trans R Soc Lond Ser B 368(1617):20120104. https://doi.org/10.1098/rstb.2012.0104

    Article  CAS  Google Scholar 

  31. Santhoshkumar P, Raju M, Sharma KK (2011) alphaA-crystallin peptide SDRDKFVIFLDVKHF accumulating in aging lens impairs the function of alpha-crystallin and induces lens protein aggregation. PLoS ONE 6(4):e19291. https://doi.org/10.1371/journal.pone.0019291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raju M, Santhoshkumar P (1860) Krishna Sharma K (2016) Alpha-crystallin-derived peptides as therapeutic chaperones. Biochim Biophys Acta 1:246–251. https://doi.org/10.1016/j.bbagen.2015.06.010

    Article  CAS  Google Scholar 

  33. Kannan R, Santhoshkumar P, Mooney BP, Sharma KK (2013) The alphaA66-80 peptide interacts with soluble alpha-crystallin and induces its aggregation and precipitation: a contribution to age-related cataract formation. Biochemistry 52(21):3638–3650. doi:https://doi.org/10.1021/bi301662w

    Article  CAS  PubMed  Google Scholar 

  34. Iwashita K, Inoue N, Handa A, Shiraki K (2015) Thermal aggregation of hen egg white proteins in the presence of salts. Protein J 34(3):212–219. doi:https://doi.org/10.1007/s10930-015-9612-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu YF, Oey I, Bremer P, Carne A, Silcock P (2017) Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white. Food Res Int 91:161–170. https://doi.org/10.1016/j.foodres.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  36. Gotte G, Vottariello F, Libonati M (2003) Thermal aggregation of ribonuclease A. A contribution to the understanding of the role of 3D domain swapping in protein aggregation. J Biol Chem 278(12):10763–10769. doi:https://doi.org/10.1074/jbc.M213146200

    Article  CAS  PubMed  Google Scholar 

  37. Alam MT, Rizvi A, Rauf MA, Owais M, Naeem A (2018) Thermal unfolding of human lysozyme induces aggregation: recognition of the aggregates by antisera against the native protein. Int J Biol Macromol 113:976–982. https://doi.org/10.1016/j.ijbiomac.2018.02.095

    Article  CAS  PubMed  Google Scholar 

  38. Kampinga HH (1993) Thermotolerance in mammalian cells. Protein denaturation and aggregation, and stress proteins. J Cell Sci 104(Pt 1):11–17

    CAS  PubMed  Google Scholar 

  39. Benjwal S, Verma S, Rohm KH, Gursky O (2006) Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci 15(3):635–639. https://doi.org/10.1110/ps.051917406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Christopher KL, Pedler MG, Shieh B, Ammar DA, Petrash JM, Mueller NH (2014) Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death. Biochim Biophys Acta 1843(2):309–315. doi:https://doi.org/10.1016/j.bbamcr.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  41. Bahmani F, Bathaie SZ, Aldavood SJ, Ghahghaei A (2019) Prevention of alpha-crystallin glycation and aggregation using l-lysine results in the inhibition of in vitro catalase heat-induced-aggregation and suppression of cataract formation in the diabetic rat. Int J Biol Macromol 132:1200–1207. doi:https://doi.org/10.1016/j.ijbiomac.2019.04.037

    Article  CAS  PubMed  Google Scholar 

  42. Lever M, Vasudevamurthy MK, Squire MA (2007) Using high-performance liquid chromatography to measure the effects of protein-stabilizing cosolvents on a model protein and fluorescent probes. Anal Biochem 367(1):122–133. doi:https://doi.org/10.1016/j.ab.2007.04.017

    Article  CAS  PubMed  Google Scholar 

  43. Canchi DR, Garcia AE (2013) Cosolvent effects on protein stability. Annu Rev Phys Chem 64:273–293. doi:https://doi.org/10.1146/annurev-physchem-040412-110156

    Article  CAS  PubMed  Google Scholar 

  44. Herberhold H, Royer CA, Winter R (2004) Effects of chaotropic and kosmotropic cosolvents on the pressure-induced unfolding and denaturation of proteins: an FT-IR study on staphylococcal nuclease. Biochemistry 43(12):3336–3345. doi:https://doi.org/10.1021/bi036106z

    Article  CAS  PubMed  Google Scholar 

  45. Schellman JA (2003) Protein stability in mixed solvents: a balance of contact interaction and excluded volume. Biophys J 85(1):108–125. https://doi.org/10.1016/S0006-3495(03)74459-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scharnagl C, Reif M, Friedrich J (2005) Stability of proteins: temperature, pressure and the role of the solvent. Biochim Biophys Acta 1749(2):187–213. doi:https://doi.org/10.1016/j.bbapap.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  47. Rosin C, Schummel PH, Winter R (2015) Cosolvent and crowding effects on the polymerization kinetics of actin. Phys Chem Chem Phys 17(13):8330–8337. https://doi.org/10.1039/c4cp04431b

    Article  CAS  PubMed  Google Scholar 

  48. Yadav JK, Prakash V (2009) Thermal stability of alpha-amylase in aqueous cosolvent systems. J Biosci 34(3):377–387. https://doi.org/10.1007/s12038-009-0044-0

    Article  CAS  PubMed  Google Scholar 

  49. Olsson C, Jansson H, Swenson J (2016) The role of trehalose for the stabilization of proteins. J Phys Chem B 120(20):4723–4731. https://doi.org/10.1021/acs.jpcb.6b02517

    Article  CAS  PubMed  Google Scholar 

  50. Katyal N, Deep S (2014) Revisiting the conundrum of trehalose stabilization. Phys Chem Chem Phys 16(48):26746–26761. https://doi.org/10.1039/c4cp02914c

    Article  CAS  PubMed  Google Scholar 

  51. Fazeli A, Shojaosadati SA, Fazeli MR, Khalifeh K, Ariaeenejad S, Moosavi-Movahedi AA (2013) The role of trehalose for metastable state and functional form of recombinant interferon beta-1b. J Biotechnol 163(3):318–324. https://doi.org/10.1016/j.jbiotec.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  52. Piper PW (1993) Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 11(4):339–355. https://doi.org/10.1111/j.1574-6976.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  53. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  54. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid by congo red spectral shift assay. Methods Enzymol 309:285–305. doi:https://doi.org/10.1016/s0076-6879(99)09021-7

    Article  CAS  PubMed  Google Scholar 

  55. Hudson SA, Ecroyd H, Kee TW, Carver JA (2009) The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J 276(20):5960–5972. doi:https://doi.org/10.1111/j.1742-4658.2009.07307.x

    Article  CAS  PubMed  Google Scholar 

  56. Bolognesi B, Kumita JR, Barros TP, Esbjorner EK, Luheshi LM, Crowther DC, Wilson MR, Dobson CM, Favrin G, Yerbury JJ (2010) ANS binding reveals common features of cytotoxic amyloid species. ACS Chem Biol 5(8):735–740. https://doi.org/10.1021/cb1001203

    Article  CAS  PubMed  Google Scholar 

  57. Lam D, Rao SK, Ratra V, Liu Y, Mitchell P, King J, Tassignon M-J, Jonas J, Pang CP, Chang DF (2015) Cataract. Nat Rev Dis Primers 1(1):15014. https://doi.org/10.1038/nrdp.2015.14

    Article  PubMed  Google Scholar 

  58. Harsolia RS, Kanwar A, Gour S, Kumar V, Kumar V, Bansal R, Kumar S, Singh M, Yadav JK (2020) Predicted aggregation-prone region (APR) in βB1-crystallin forms the amyloid-like structure and induces aggregation of soluble proteins isolated from human cataractous eye lens. Int J Biol Macromol 163:702–710. doi:https://doi.org/10.1016/j.ijbiomac.2020.07.028

    Article  CAS  PubMed  Google Scholar 

  59. Ueda T, Nagata M, Imoto T (2001) Aggregation and chemical reaction in hen lysozyme caused by heating at pH 6 are depressed by osmolytes, sucrose and trehalose. J BioChem 130(4):491–496. doi:https://doi.org/10.1093/oxfordjournals.jbchem.a003011

    Article  CAS  PubMed  Google Scholar 

  60. Habib S, Khan MA, Younus H (2007) Thermal destabilization of stem bromelain by trehalose. Protein J 26(2):117–124. doi:https://doi.org/10.1007/s10930-006-9052-1

    Article  CAS  PubMed  Google Scholar 

  61. Rao HY, Yao K (2009) Study on soluble and insoluble lens proteins in contusion cataract of rat model. Chin J Ophthalmol 45(8):703–707

    CAS  Google Scholar 

  62. Kamei A, Iwata S, Horwitz J (1987) Characterization of water-insoluble proteins in human lens nuclei. Jpn J Ophthalmol 31(3):433–439

    CAS  PubMed  Google Scholar 

  63. Alperstein AM, Ostrander JS, Zhang TO, Zanni MT (2019) Amyloid found in human cataracts with two-dimensional infrared spectroscopy. Proc Natl Acad Sci USA 116(14):6602–6607. doi:https://doi.org/10.1073/pnas.1821534116

    Article  CAS  PubMed  Google Scholar 

  64. Hains PG, Truscott RJ (2007) Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J Proteome Res 6(10):3935–3943. https://doi.org/10.1021/pr070138h

    Article  CAS  PubMed  Google Scholar 

  65. Sudrik C, Cloutier T, Pham P, Samra HS, Trout BL (2017) Preferential interactions of trehalose, L-arginine.HCl and sodium chloride with therapeutically relevant IgG1 monoclonal antibodies. mAbs 9(7):1155–1168. doi:https://doi.org/10.1080/19420862.2017.1358328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grant (Ref. No. EMR/2017/005417) sponsored by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India, New Delhi, India. The authors express their sincere gratitude to Dr. Vivek Verma, Department of Biotechnology, Central University of Rajasthan and Dr. Manish Singh, Institute of Nano Science and Technology, Mohali, for their assistance in performing experiments in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Kant Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram, L., Mittal, C., Harsolia, R. et al. Trehalose Inhibits the Heat-Induced Formation of the Amyloid-Like Structure of Soluble Proteins Isolated from Human Cataract Lens. Protein J 39, 509–518 (2020). https://doi.org/10.1007/s10930-020-09919-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09919-8

Keywords

Navigation