Skip to main content
Log in

On the Kuzmin model in fractional Newtonian gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Fractional Newtonian gravity, based on the fractional generalization of Poisson’s equation for Newtonian gravity, is a novel approach to Galactic dynamics aimed at providing an alternative to the dark matter paradigm through a non-local modification of Newton’s theory. We provide an in-depth discussion of the gravitational potential for the Kuzmin disk within this new approach. Specifically, we derive an integral and a series representation for the potential, we verify its asymptotic behavior at large scales, and we provide illuminating plots of the resulting equipotential surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. Amendola, S. Tsujikawa, Dark Energy, Theory and Observations (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  2. P. Brax, What makes the Universe accelerate? A review on what dark energy could be and how to test it. Rep. Prog. Phys. 81(1), 016902 (2018)

    ADS  MathSciNet  Google Scholar 

  3. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005). arXiv:hep-ph/0404175 [hep-ph]

    ADS  Google Scholar 

  4. K. Garrett, G. Duda, Dark matter: a primer. Adv. Astron. 2011, 968283 (2011). arXiv:1006.2483 [hep-ph]

    ADS  Google Scholar 

  5. G. Bertone, D. Hooper, History of dark matter. Rev. Mod. Phys. 90(4), 045002 (2018). arXiv:1605.04909 [astro-ph.CO]

    ADS  Google Scholar 

  6. G.R. Blumenthal, S.M. Faber, J.R. Primack, M.J. Rees, Formation of galaxies and large scale structure with cold dark matter. Nature 311, 517–525 (1984)

    ADS  Google Scholar 

  7. S. Capozziello, S. Carloni, A. Troisi, Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys. 1, 625 (2003). arXiv:astro-ph/0303041

    Google Scholar 

  8. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004). arXiv:astro-ph/0306438

    ADS  Google Scholar 

  9. T.P. Sotiriou, V. Faraoni, f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010). arXiv:0805.1726 [gr-qc]

    ADS  MATH  Google Scholar 

  10. A. De Felice, S. Tsujikawa, f(R) theories. Living Rev. Rel. 13, 3 (2010). arXiv:1002.4928 [gr-qc]

    MATH  Google Scholar 

  11. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011). arXiv:1011.0544 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  12. S. Capozziello, M. De Laurentis, Extended theories of gravity. Phys. Rep. 509, 167 (2011). arXiv:1108.6266 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  13. S. Capozziello, M. De Laurentis, V. Faraoni, A Bird’s eye view of f(R)-gravity. Open Astron. J. 3, 49 (2010). arXiv:0909.4672 [gr-qc]

    ADS  Google Scholar 

  14. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Rep. 692, 1 (2017). arXiv:1705.11098 [gr-qc]

    ADS  MathSciNet  MATH  Google Scholar 

  15. S. Nojiri, S.D. Odintsov, Dark energy, inflation and dark matter from modified F(R) gravity. TSPU Bull. N8(110), 7–19 (2011). arXiv:0807.0685 [hep-th]

    Google Scholar 

  16. S. Nojiri, S.D. Odintsov, D. Saez-Gomez, Cosmological reconstruction of realistic modified F(R) gravities. Phys. Lett. B 681, 74–80 (2009). arXiv:0908.1269 [hep-th]

    ADS  MathSciNet  Google Scholar 

  17. L. Heisenberg, A systematic approach to generalisations of general relativity and their cosmological implications. Phys. Rep. 796, 1–113 (2019). arXiv:1807.01725 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  18. M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983)

    ADS  Google Scholar 

  19. M. Milgrom, A modification of the Newtonian dynamics: implications for galaxies. Astrophys. J. 270, 371 (1983)

    ADS  Google Scholar 

  20. M. Milgrom, A modification of the Newtonian dynamics: implications for galaxy systems. Astrophys. J. 270, 384 (1983)

    ADS  Google Scholar 

  21. J. Bekenstein, M. Milgrom, Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 286, 7 (1984)

    ADS  Google Scholar 

  22. K.G. Begeman, H I rotation curves of spiral galaxies. I - NGC 3198. Astron. Astrophys. 223, 47 (1989)

    ADS  Google Scholar 

  23. F. Zwicky, On the masses of nebulae and of clusters of nebulae. Astrophys. J. 86, 217 (1937)

    ADS  MATH  Google Scholar 

  24. E. Corbelli, P. Salucci, The extended rotation curve and the dark matter halo of M33. Mon. Not. R. Astron. Soc. 311, 441 (2000). arXiv:astro-ph/9909252

    ADS  Google Scholar 

  25. J.D. Bekenstein, Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509 (2004). arXiv:astro-ph/0403694 [astro-ph]

    ADS  Google Scholar 

  26. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (World Scientific, Singapore, 2010)

    MATH  Google Scholar 

  27. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives (Gordon and Breach Science Publishers, Yverdon, 1993)

    MATH  Google Scholar 

  28. A. Giusti et al., A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 23(1), 9–54 (2020). arXiv:2002.10978 [math.CA]

    MathSciNet  MATH  Google Scholar 

  29. R. Garrappa, F. Mainardi, G. Maione, Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19(5), 1105–1160 (2016). arXiv:1611.04028 [math-ph]

    MathSciNet  MATH  Google Scholar 

  30. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000). arXiv:1611.04028 [math-ph]

    ADS  MathSciNet  MATH  Google Scholar 

  31. G. Calcagni, Geometry of fractional spaces. Adv. Theor. Math. Phys. 16(2), 549–644 (2012). arXiv:1106.5787 [hep-th]

    MathSciNet  MATH  Google Scholar 

  32. V.E. Tarasov, Fractional derivative regularization in QFT. Adv. High Energy Phys. 2018, 7612490 (2018). arXiv:1805.08566 [hep-th]

    MathSciNet  MATH  Google Scholar 

  33. A.O. Barvinsky, P.I. Pronin, W. Wachowski, Heat kernel for higher-order differential operators and generalized exponential functions. Phys. Rev. D 100(10), 105004 (2019). arXiv:1908.02161 [hep-th]

    ADS  MathSciNet  Google Scholar 

  34. A.M. Frassino, O. Panella, Quantization of nonlocal fractional field theories via the extension problem. Phys. Rev. D 100(11), 116008 (2019). arXiv:1907.00733 [hep-th]

    ADS  Google Scholar 

  35. A. Giusti, MOND-like fractional Laplacian theory. Phys. Rev. D 101(12), 124029 (2020). arXiv:2002.07133 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  36. G. U. Varieschi, Fractional Gravity and Modified Newtonian Dynamics, arXiv:2003.05784 [gr-qc]

  37. G. U. Varieschi, Newtonian Fractional Gravity and Disk Galaxies, arXiv:2008.04737 [gr-qc]

  38. P. R. Stinga, User’s guide to the fractional Laplacian and the method of semigroups, in: A. Kochubei, Yu. Luchko, Handbook of Fractional Calculus with Applications, Vol. 2 Fractional Differential Equations (De Gruyter, 2019)

  39. M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017). arXiv:1507.07356 [math.AP]

    MathSciNet  MATH  Google Scholar 

  40. A. Lischke et al., What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    MathSciNet  Google Scholar 

  41. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    MathSciNet  MATH  Google Scholar 

  42. R.B. Tully, J.R. Fisher, A new method of determining distances to galaxies. Astron. Astrophys. 54(3), 661–673 (1977)

    ADS  Google Scholar 

  43. R. Casadio, A. Giugno, A. Giusti, Matter and gravitons in the gravitational collapse. Phys. Lett. B 763, 337–340 (2016). arXiv:1606.04744 [hep-th]

    ADS  MATH  Google Scholar 

  44. R. Casadio, A. Giugno, A. Giusti, M. Lenzi, Quantum corpuscular corrections to the Newtonian potential. Phys. Rev. D 96(4), 044010 (2017). arXiv:1702.05918 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  45. R. Casadio, M. Lenzi, O. Micu, Bootstrapping Newtonian gravity. Phys. Rev. D 98(10), 104016 (2018). arXiv:1806.07639 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  46. R. Casadio, I. Kuntz, Bootstrapped Newtonian quantum gravity. Eur. Phys. J. C 80(6), 581 (2020). arXiv:2003.03579 [gr-qc]

    ADS  MATH  Google Scholar 

  47. M. Cadoni, R. Casadio, A. Giusti, W. Mück, M. Tuveri, Effective fluid description of the dark universe. Phys. Lett. B 776, 242 (2018). arXiv:1707.09945 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  48. M. Cadoni, R. Casadio, A. Giusti, M. Tuveri, Emergence of a dark force in corpuscular gravity. Phys. Rev. D 97(4), 044047 (2018). arXiv:1801.10374 [gr-qc]

    ADS  Google Scholar 

  49. M. Tuveri, M. Cadoni, Galactic dynamics and long-range quantum gravity. Phys. Rev. D 100(2), 024029 (2019). arXiv:1904.11835 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  50. A. Giusti, On the corpuscular theory of gravity. Int. J. Geom. Methods Mod. Phys. 16(03), 1930001 (2019)

    MathSciNet  MATH  Google Scholar 

  51. J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 2011)

    MATH  Google Scholar 

  52. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (US Department of Commerce. National Bureau of Standards Applied Mathematics series 55, 1965)

  53. M. Riesz, L’intégrale de Riemann–Liouville et le problème de Cauchy. Acta Math. 81, 1–222 (1949)

    MathSciNet  MATH  Google Scholar 

  54. R. Estrada, R.P. Kanwal, Regularization, pseudofunction, and Hadamard finite part. J. Math. Anal. Appl. 141, 195–207 (1989)

    MathSciNet  MATH  Google Scholar 

  55. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.27 of 2020-06-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds

  56. S. Samko, Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn. 71, 653–662 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Roberto Garrappa is supported by a GNCS-INdAM 2020 Project. Andrea Giusti and Geneviève Vachon are supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. 2016-03803 to V. Faraoni) and by Bishop’s University. The work of Andrea Giusti has been carried out in the framework of the activities of the Italian National Group for Mathematical Physics [Gruppo Nazionale per la Fisica Matematica (GNFM) and Istituto Nazionale di Alta Matematica (INdAM)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giusti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giusti, A., Garrappa, R. & Vachon, G. On the Kuzmin model in fractional Newtonian gravity. Eur. Phys. J. Plus 135, 798 (2020). https://doi.org/10.1140/epjp/s13360-020-00831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00831-9

Navigation