Skip to main content
Log in

Free Energy of Nucleus Formation during Growth of III–V Semiconductor Nanowires

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

An expression for the free energy of nucleus formation from liquid phase of a catalyst during growth of III–V semiconductor nanowires (NWs) via the vapor–liquid–solid (VLS) mechanism has been derived with allowance for depletion of the number of atoms of the group V element (As) in the drop as a result of the island growth during As deposition from the gas–vapor phase. Various regimes of island formation, including a regime with growth arrest at small As concentrations in the drop have been theoretically studied. It is established that the growth arrest takes place when the As concentration decreases to an equilibrium level. The obtained results can be used in simulations of the growth kinetics of III–V semiconductor NWs, statistics of their nucleation, and NW length distribution functions, as well as for modeling of the crystalline phase growth and doping processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Zhang, G. Zheng, and C. M. Lieber, Nanowires: Building Blocks for Nanoscience and Nanotechnology (Springer, New York, 2016).

    Book  Google Scholar 

  2. V. G. Dubrovskii, in Semiconductors and Semimetals, Ed. by A. Fontcuberta i Morral, S. A. Dayeh, and   C. Jagadish (Academic, Burlington, 2015), Vol. 93, p. 1.

    Google Scholar 

  3. E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, Nano Lett. 14, 2604 (2014).

    Article  ADS  Google Scholar 

  4. G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Yu. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, Nanoscale Res. Lett. 5, 360 (2010).

    Article  ADS  Google Scholar 

  5. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  Google Scholar 

  6. V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, G. E. Cirlin, and V. M. Ustinov, J. Cryst. Growth 289, 31 (2006).

    Article  ADS  Google Scholar 

  7. F. Matteini, V. G. Dubrovskii, D. Rüffer, G. Tütüncüoğlu, Y. Fontana, and A. Fontcuberta i Morral, Nanotecnology 26, 105603 (2015).

    Article  ADS  Google Scholar 

  8. G. E. Cirlin, V. G. Dubrovskii, V. N. Petrov, N. K. Polyakov, N. P. Korneeva, V. N. Demidov, A. O. Golubok, S. A. Masalov, D. V. Kurochkin, O. M. Gorbenko, N. I. Komyak, V. M. Ustinov, A. Yu. Egorov, A. R. Kovsh, M. V. Maximov, et al., Semicond. Sci. Technol. 13, 1262 (1998).

    Article  ADS  Google Scholar 

  9. F. Glas, Phys. Rev. B 74, 121302(R) (2006).

  10. K. W. Ng, W. S. Ko, T. T. D. Tran, R. Chen, M. V. Nazarenko, F. Lu, V. G. Dubrovskii, M. Kamp, A. Forchel, and C. J. Chang-Hasnain, ACS Nano 7, 100 (2013).

    Article  Google Scholar 

  11. C.-Y. Wen, J. Tersoff, K. Hillerich, M. C. Reuter, J. H. Park, S. Kodambaka, E. A. Stach, and F. M. Ross, Phys. Rev. Lett. 107, 025503 (2011).

    Article  ADS  Google Scholar 

  12. J. C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J.-L. Maurice, L. Travers, and Y. Ollivier, Phys. Rev. Lett. 121, 166101 (2018).

    Article  ADS  Google Scholar 

  13. F. Panciera, Z. Baraissov, G. Patriarche, V. G. Dubrovskii, F. Glas, L. Travers, U. Mirsaidov, and J. C. Harmand, Nano Lett. 20, 1669 (2020).

    Article  ADS  Google Scholar 

  14. D. Reguera, R. K. Bowles, Y. Djikaev, and H. J. Reiss, J. Chem. Phys. 118, 340 (2003).

    Article  ADS  Google Scholar 

  15. J. W. P. Schmelzer and A. S. Abyzov, J. Chem. Phys. 134, 054511 (2011).

    Article  ADS  Google Scholar 

  16. V. G. Dubrovskii, Cryst. Growth Des. 17, 2589 (2017).

    Article  Google Scholar 

  17. F. Glas and V. G. Dubrovskii, Phys. Rev. Mater. (in press).

  18. V. G. Dubrovskii, Tech. Phys. Lett. 46, 357 (2020).

    Article  ADS  Google Scholar 

  19. V. G. Dubrovskii and H. Hijazi, Nanomaterials 10, 833 (2020).

    Article  Google Scholar 

  20. V. G. Dubrovskii and J. Grecenkov, Cryst. Growth Des. 15, 340 (2015).

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, projects nos. 18-02-40006, 19-52-53031, 20-52-16301, and 20-02-00351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Dubrovskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, V.G., Sokolovskii, A.S. & Shtrom, I.V. Free Energy of Nucleus Formation during Growth of III–V Semiconductor Nanowires. Tech. Phys. Lett. 46, 889–892 (2020). https://doi.org/10.1134/S1063785020090187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020090187

Keywords:

Navigation