Skip to main content
Log in

A Vertical-Cavity Surface-Emitting Laser for the 1.55-μm Spectral Range with Tunnel Junction Based on n++-InGaAs/p++-InGaAs/p++-InAlGaAs Layers

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A design of a tunnel junction (TJ) based on n++-InGaAs/p++-InGaAs/p++-InAlGaAs layers for vertical-cavity surface-emission lasers (VCSELs) for the 1.55-μm spectral range fabricated by wafer fusion of an InAlGaAsP/InP optical cavity and wafers with AlGaAs/GaAs distributed Bragg reflectors has been suggested and tested. The presence of the oxidation-resistant InGaAs layers makes it possible to employ the molecular-beam epitaxy in all stages of the fabrication technology of VCSELs, including the overgrowth of the surface profile in the TJ layer. Owing to the Burstein–Moss effect and to the thickness minimization of the p++-InGaAs layer, it was possible to avoid a buildup of the internal optical loss. As a result, the characteristics of the thus fabricated devices are comparable with those of VCSELs having an n++-/p++-InAlGaAs TJ and a similar level of the mirror losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, 2013).

    Book  Google Scholar 

  2. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, IEEE Photon. Technol. Lett. 18, 1717 (2006).

    Article  ADS  Google Scholar 

  3. A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, and J. Bowers, Appl. Phys. Lett. 78, 2632 (2001).

    Article  ADS  Google Scholar 

  4. A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, IEEE Photon. Technol. Lett. 16, 1230 (2004).

    Article  ADS  Google Scholar 

  5. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, Appl. Phys. Lett. 76, 2179 (2000).

    Article  ADS  Google Scholar 

  6. W. Hofmann, IEEE Photon. J. 2, 802 (2010).

    Article  ADS  Google Scholar 

  7. M. Arzberger, M. Lohner, G. Böhm, and M.-C. Amann, Electron. Lett. 36, 87 (2000).

    Article  ADS  Google Scholar 

  8. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, G. Abstreiter, and M.-C. Amann, Jpn. J. Appl. Phys. 39 (4A), 1727 (2000).

    Article  ADS  Google Scholar 

  9. S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Böhm, and M.-C. Amann, IEEE J. Lightwave Technol. 35, 727 (2017).

    Article  ADS  Google Scholar 

  10. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, and E. Kapon, Opt. Express 22, 32180 (2014).

    Article  ADS  Google Scholar 

  11. A. V. Babichev, L. Ya. Karachinsky, I. I. Novikov, A. G. Gladyshev, S. A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Turkiewicz, K. O. Voropaev, A. S. Ionov, M. Agustin, N. N. Ledentsov, and A. Y. Egorov, IEEE J. Sel. Top. Quantum Electron. 53, 2400808 (2017).

    Article  Google Scholar 

  12. E. Kapon and A. Sirbu, Nat. Photon. 3, 27 (2009).

    Article  ADS  Google Scholar 

  13. S. A. Blokhin, M. A. Bobrov, A. A. Blokhin, A. G. Kuzmenkov, N. A. Maleev, V. M. Ustinov, E. S. Kolodeznyi, S. S. Rochas, A. V. Babichev, I. I. Novikov, A. G. Gladyshev, L. Ya. Karachinskii, D. V. Denisov, K. O. Voropaev, A. S. Ionov, and A. Yu. Egorov, Opt. Spectrosc. 127, 140 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.I. Troshkov for examining the samples under study by scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Bobrov, M.A., Maleev, N.A. et al. A Vertical-Cavity Surface-Emitting Laser for the 1.55-μm Spectral Range with Tunnel Junction Based on n++-InGaAs/p++-InGaAs/p++-InAlGaAs Layers. Tech. Phys. Lett. 46, 854–858 (2020). https://doi.org/10.1134/S1063785020090023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020090023

Keywords:

Navigation