Skip to main content
Log in

The C, O, and Sr Isotope Chemostratigraphy of the Vendian (Ediacaran)–Cambrian Transition, Olekma River, Western Slope of the Aldan Shield

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract—

The Upper Neoproterozoic–Lower Cambrian section in the Olekma River basin is divided (from bottom to top) into the Dikimdia, Seralakh, Porokhtakh, and Pestrotsvetnaya formations, which are mainly composed of dolostones with a subordinate amount of sandstone, silty shales, gypsum, anhydrite, and native sulfur. The isotope data available allow one to substantially correct the stratigraphic units of the Olekma section, which is probably the most completed section on the Siberian Platform, including the transitional strata from the Vendian (Ediacaran) to the Cambrian. The Dikimdia Formation dolostones have typical Late Ediacaran values of 87Sr/86Sr = 0.70837–0.70843 and abnormally high δ13С values (up to 5.1‰), which gives reason to correlate this formation with the Ust’-Yudoma Formation (the stratotype area), the Dengying Formation in South China (548–550 Ma), the Uluntuy Formation of the Baikal Group, and the terminal Ediacaran sections in some other areas. The 87Sr/86Sr ratio decreases upward and reaches a minimum (0.70803–0.70818) near the Porokhtakh–Pestrotsvetnaya boundary. The lowermost part of the Porokhtakh Formation contains a negative carbon isotope excursion (δ13С = –4.4‰) marking the base of the Nemakit-Daldynian Stage, whereas ~8 m below the base of the Pestrotsvetnaya Formation the positive “pre-Tommotian” excursion (δ13С = 4.1‰) is located. There is a sharp decrease in Fe and Mn contents from ~3800 and ~300 ppm to ~2000 and ~130 ppm, respectively, in dolostones at the Ediacaran–Cambrian transition boundary which corresponds to the Seralakh–Porokhtakh boundary. High δ18О values (26.0 ± 1.2‰) do not provide reasons to associate the carbon isotope excursions, the 87Sr/86Sr trend, and variations of Fe and Mn contents with diagenetic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Banner, J. and Hanson, G., Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 3123–3137.

    Article  Google Scholar 

  2. Bartley, J.K., Pope, M., Knoll, A.H., Semikhatov, M.A., and Petrov, P.Yu., A Vendian–Cambrian boundary succession from the northwestern margin of the Siberian Platform: stratigraphy, palaeontology, chemostratigraphy and correlation, Geol. Mag., 1998, vol. 135, no. 4, pp. 473–494.

    Article  Google Scholar 

  3. Bartley, J.K., Semikhatov, M.A., Kaufman, A.J., Knoll, A.H., Pope, M.C., and Jacobsen, S.B., Global events across the Mesoproterozoic–Neoproterozoic boundary: C and Sr isotopic evidence from Siberia, Precambrian Res., 2001, vol. 111, pp. 165–202.

    Article  Google Scholar 

  4. Bobrov, A.K., Stratigrafiya i paleogeografiya otlozhenii verkhnego dokembriya Yuzhnoi Yakutii (Stratigraphy and Paleogeography of Upper Cambrian Deposits in Southern Yakutia), Yakutsk: Yakutsk. Knizhn. Izd., 1979 [in Russian].

  5. Brand, U. and Veizer, J., Chemical diagenesis of a multicomponent carbonate system: 2. Stable isotopes, Sediment. Petrol., 1981, vol. 51, pp. 987–997.

    Google Scholar 

  6. Brasier, M.D., Khomentovsky, V.V., and Corfield, R.M., Stable isotope calibration of the earliest skeletal fossil assemblages in eastern Siberia (Precambrian–Cambrian boundary), Terra Nova, 1993, vol. 5, pp. 225–232.

    Article  Google Scholar 

  7. Brasier, M.D., Rozanov, A.Yu., Zhuravlev, A.Yu., Corfield, R.M., and Derry, L.A., A carbon isotope reference scale for the Lower Cambrian succession in Siberia: report of IGCP Project 303, Geol. Mag., 1994, vol. 131, no. 6, pp. 767–783.

    Article  Google Scholar 

  8. Brasier, M.D., Shields, G., Kuleshov, V.N., and Zhegallo, E.A., Integrated chemo and biostratigraphic calibration of early animal evolution: Neoproterozoic–Early Cambrian of southwest Mongolia, Geol. Mag., 1996, vol. 133, no. 4, pp. 445–485.

    Article  Google Scholar 

  9. Calver, C.R., Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification, Precambrian Res., 2000, vol. 100, pp. 121–150.

    Article  Google Scholar 

  10. Chugaev, A.V., Chernyshev, I.V., Pokrovskii, B.G., Mandzhieva, G.V., Gareev, B.I., Sadasyuk, A.S., and Batalin, G.A., The 238U/235U Ratio as an indicator of redox conditions in the Ediacaran paleobasin (sequence of the Chaya River, Baikal–Patom Highland, southern part of Central Siberia), Dokl. Earth Sci., 2019, vol. 485, no. 1, pp. 336–340.

    Article  Google Scholar 

  11. Chumakov, N.M., Late Proterozoic African glacial era, Stratigr. Geol. Correl., 2011, vol. 19, no. 1, pp. 1–20.

    Article  Google Scholar 

  12. Chumakov, N.M., Glaciation of the Earth: History, stratigraphy, and biosphere significance, in Tr. GIN RAN. T. 611 (Trans. Geol. Inst. Ross. Acad. Sci. Vol. 611), Moscow: GEOS, 2015.

  13. Chumakov, N.M., Pokrovsky, B.G., and Melezhik, V.A., Geological history of the Late Precambrian Patom Supergroup (Central Siberia), Dokl. Earth Sci., 2007, vol. 413, no. 3, pp. 343–346.

    Article  Google Scholar 

  14. Derry, L.A., Brasier, M.D., Corfield, R.M., Rozanov, A.Yu., and Zhuravlev, A.Yu., Sr and C isotopes in Lower Cambrian carbonates from the Siberian Craton: A paleoenvironmental record during “the Cambrian explosion”, Earth Planet. Sci. Lett., 1994, vol. 128, pp. 671–681.

    Article  Google Scholar 

  15. Grotzinger, J.P., Bowring, S.A., Saylor, B.Z., and Kaufman, A.J., Biostratigraphic and geochronologic constraints on early animal evolution, Science, 1995, vol. 270, pp. 598–604.

    Article  Google Scholar 

  16. Le Guerroué, E. and Cozzi, A., Veracity of Neoproterozoic negative C-isotope values: the termination of the Shuram negative excursion, Gondwana Res., 2010, vol. 17, pp. 653–661.

    Article  Google Scholar 

  17. Halverson, G.P., Dudas, F.O., Maloof, A.C., and Bowring, S.A., Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 256, pp. 103–129.

    Article  Google Scholar 

  18. Halverson, G.P., Wade, B.P., Hurtgen, M.T., and Barovich, K.M., Neoproterozoic chemostratigraphy, Precambrian Res., 2010, vol. 182, pp. 337–350.

    Article  Google Scholar 

  19. Hofmann, M., Linnemann, U., Hoffmann, K.H., Germs, G., Gerdes, A., Marko, L., Eckelmann, K., Gärtner, A., and Krause, R., The four Neoproterozoic glaciations of southern Namibia and their detrital zircon record: the fingerprints of four crustal growth events during two supercontinent cycles, Precambrian Res., 2014, vol. 259, pp. 176–188.

    Article  Google Scholar 

  20. Ivanova, I.A., Geochemistry of organic matter of the Neoproterozoic strata within the Berezovka depression (Seralakh Formation, Siberian Platform), Russ. Geol. Geophys., 2016, vol. 57, no. 9, pp. 1334–1341.

    Article  Google Scholar 

  21. Kaufman, A.J., Knoll, A.H., Semikhatov, M.A., Grotzinger, J.P., Jacobsen, S.B., and Adams, W., Integrated chronostratigraphy of Proterozoic–Cambrian boundary beds in the western Anabar region, Northern Siberia, Geol. Mag., 1996, vol. 133, pp. 509–533.

    Article  Google Scholar 

  22. Khabarov, E.M. and Izokh, O.P., Sedimentology and isotope geochemistry of Riphean carbonates in the Kharaulakh Range of northern East Siberia, Russ. Geol. Geophys., 2014, vol. 55, nos. 5–6, pp. 629–648.

    Article  Google Scholar 

  23. Khabarov, E.M. and Ponomarchuk, V.A., Carbon isotopes in the Upper Riphean deposits of the Baikal Group in western Cisbaikalia: stratigraphic implications, Russ. Geol. Geophys., 2005, vol. 46, no. 10, pp. 1003–1023.

    Google Scholar 

  24. Knoll, A.H., Grotzinger, J.P., Kaufman, A.J., and Kolosov, P., Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia, Precambrian Res., 1995, vol. 73, pp. 251–270.

    Article  Google Scholar 

  25. Kochnev, B.B., Pokrovsky, B.G., Kuznetsov, A.B., and Marusin, V.V., C and Sr isotope chemostratigraphy of Vendian–Lower Cambrian carbonate sequences in the central Siberian Platform, Russ. Geol. Geophys., 2018, vol. 59, no. 6, pp. 585–605.

    Article  Google Scholar 

  26. Kokoulin, M.L. and Feoktistov, L.L., Geologicheskaya karta SSSR. Masshtab 1 : 200 000. Seriya Amginskaya. List O-51-II. Ob’’yasnitel’naya zapiska (The 1 : 200 000 Geological Map of the USSR. Amga Ser. Sheet O-51-II. Explanatory Note), Moscow: Nedra, 1967 [in Russian]. Kokoulin, M.L. and Shirinkin, N.G., Geologicheskaya karta SSSR. Masshtab 1 : 200 000. Seriya Amginskaya. List R-51-XXXII. Ob’’yasnitel’naya zapiska (The 1 : 200 000 Geological Map of the USSR. Amga Ser., Sheet R-51-XXXII. Explanatory Note), Moscow: Nedra, 1965 [in Russian].

  27. Kouchinsky, A.V., Bengston, S., Missarzhevsky, V.V., Pelechaty, S., Torssander, P., and Val’kov, A.K., Carbon isotope stratigraphy and the problem of a pre-Tommotian stage in Siberia, Geol. Mag., 2001, vol. 138, no. 4, pp. 387–396.

    Article  Google Scholar 

  28. Kouchinsky, A.V., Bengston, S., Pavlov, V., Runnegar, B., Val’kov, A., and Young, E., Pre-Tommotian age of the lower Pestrotsvet fm. in the Selinde section on the Siberian Craton: carbon isotopic evidence, Geol. Mag., 2005, vol. 142, pp. 1–7.

    Article  Google Scholar 

  29. Kuznetsov, A.B., Semikhatov, M.A., Gorokhov, I.M., et al., Sr isotope composition in carbonates of the Karatau Group, Southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean ocean, Stratigr. Geol. Correl., 2003, vol. 11, no.5, pp. 415–449.

    Google Scholar 

  30. Kuznetsov, A.B., Ovchinnikova, G.V., Krupenin, M.T., et al., Diagenesis of carbonate and siderite deposits of the Lower Riphean Bakal Formation, the Southern Urals: Sr isotopic characteristics and Pb–Pb age, Lithol. Miner. Resour., 2005, vol. 40, no. 3, pp. 195–215.

    Article  Google Scholar 

  31. Kuznetsov, A.B., Semikhatov, M.A., Maslov, A.V., Gorokhov, I.M., Prasolov, E.M., Krupenin, M.T., and Kislova, I.V., New data on Sr-and C-isotopic chemostratigraphy of the Upper Riphean type section (Southern Urals), Stratigr. Geol. Correl., 2006, vol. 14, no. 6, pp. 602–628.

    Article  Google Scholar 

  32. Kuznetsov, A.B., Ovchinnikova, G.V., Semikhatov, M.A., et al., The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka Formation, the Lower Riphean Burzyan Group of the Southern Urals, Stratigr. Geol. Correl., 2008, vol. 16, no. 2, pp. 120–137.

    Article  Google Scholar 

  33. Kuznetsov, A.B., Ovchinnikova, G.V., Gorokhov, I.M., Letnikova, E.F., Kaurova, O.K., and Konstantinova, G.V., Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb–Pb dating of carbonates from the Baikal type section, southeastern Siberia, J. Asian Earth Sci., 2013, vol. 62, pp. 51–66.

    Article  Google Scholar 

  34. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian), Stratigr. Geol. Correl., 2014, vol. 22, no. 6, pp. 553–575.

    Article  Google Scholar 

  35. Letnikova, E.F., Kuznetsov, A.B., Vishnevskaya, I.A., et al., The geochemical and isotope (Sr, C, O) characteristics of the Vendian–Cambrian carbonate deposits of the Azyr-Tal Ridge (Kuznetsk Alatau): chemostratigraphy and sedimentogenesis environments, Russ. Geol. Geophys., 2011, vol. 52, no. 10, pp. 1154–1170.

    Article  Google Scholar 

  36. Li, D., Ling, H.-F., Shields-Zhou, G.A., Chena, X., Cremonese, L., Och, L., Thirlwall, M., and Manning, C.J., Carbon and strontium isotope evolution of seawater across the Ediacaran–Cambrian transition: evidence from the Xiaotan section, NE Yunnan, South China, Precambrian Res., 2013, vol. 225, pp. 128–147.

    Article  Google Scholar 

  37. Magaritz, M., Holser, W.T., and Kirshwink, J.L., Carbon-isotope events across the Precambrian–Cambrian boundary on the Siberian platform, Nature, 1986, vol. 320, pp. 258–259.

    Article  Google Scholar 

  38. Maloof, A.C., Ramezani, J., Bowring, S.A., Fike, D.A., Porter, S.M., and Mazouad, M., Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian–Tommotian boundary δ13C shift, Morocco, Geology, 2010, vol. 38, pp. 623–626.

    Article  Google Scholar 

  39. Melezhik, V.A., Kuznetsov, A.B., Fallick, A.E., Smith, R.A., Gorokhov, I.M., Jamal, D., and Cataune, F., Depositional environments and an apparent age for the Geci meta-limestones: constraints on geological history of northern Mozambique, Precambrian Res., 2006, vol. 148, nos. 1/2, pp. 19–31.

    Article  Google Scholar 

  40. Melezhik, V.A., Pokrovsky, B.G., Fallick, A.E., Kuznetsov, A.B., and Bujakaite, M.I., Constraints on 87Sr/86Sr of Late Ediacaran seawater: insights from Siberian high-Sr limestones, J. Geol. Soc. London, 2009, vol. 166, pp. 183–191.

    Article  Google Scholar 

  41. Melezhik, V.A., Ihlen, P.M., Kuznetsov, A.B., Gjelle, S., Solli, A., Gorokhov, I.M., Fallick, A.E., and Bjerkgard, T., Pre-Sturtian (800–730 Ma) depositional age of carbonates in sedimentary sequences hosting stratiform iron ores in the Uppermost Allochthon of the Norwegian Caledonides: a chemostratigraphic approach, Precambrian Res., 2015, vol. 261, pp. 272–299.

    Article  Google Scholar 

  42. Misi, A., Kaufman, A.J., Veizer, J., et al., Chemostratigraphic correlation of Neoproterozoic successions in South America, Chem. Geol., 2006, vol. 237, pp. 161–185.

    Google Scholar 

  43. Moskvitin, I.E., Structure and material composition of the Vendian deposits of the Seralakh Formation in the Olekma River basin, in Stratigrafiya i paleontologiya proterozoya i kembriya vostoka Sibirskoi platformy (Stratigraphy and Paleontology of the Proterozoic and Cambrian of the Eastern Siberian Platform), Yakutsk: Yakutsk. Knizhn. Izd., 1970, pp. 116–125.

  44. Och, L.M. and Shields-Zhou, G.A., The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling, Earth-Sci. Rev., 2012, vol. 110, pp. 26–57.

    Article  Google Scholar 

  45. Opornye razrezy otlozhenii kembriya i dokembriya Sibirskoi platformy (Reference Sections of Upper Precambrian and Lower Cambrian Rocks on the Siberian Platform), Moscow: Nauka, 1972 [in Russian].

  46. Podkovyrov, V.N., Semikhatov, M.A., Kuznetsov, A.B., Vinogradov, D.P., Kozlov, V.I., and Kislova, I.V., Carbonate carbon isotopic composition in the Upper Riphean Stratotype, the Karatau Group, Southern Urals, Stratigr. Geol. Correl., 1998, vol. 6, no. 4, pp. 319–335.

    Google Scholar 

  47. Pokrovskii, B.G., The Proterozoic–Paleozoic boundary: Isotope anomalies of the Siberian Platform section and global environmental changes, Lithol. Miner. Resour., 1996, vol. 31, no. 4, pp. 333–348.

    Google Scholar 

  48. Pokrovskii, B.G. and Missarzhevsky, V.V., Isotope correlation of sediments at the Precambrian–Cambrian boundary in the Siberian Platform, Dokl. Akad. Nauk, 1993, vol. 329, no. 6, pp. 768–771.

    Google Scholar 

  49. Pokrovsky, B.G. and Bujakaite, M.I., Geochemistry of C, O, and Sr isotopes in the Neoproterozoic carbonates from the Southwestern Patom paleobasin, southern Middle Siberia, Lithol. Miner. Resour., 2015, vol. 50, no. 2, pp. 144–169.

    Article  Google Scholar 

  50. Pokrovsky, B.G. and Bujakaite, M.I., Geochemistry of C, O, and Sr isotopes in the Neoproterozoic carbonates from the southwestern Patom paleobasin, southern Middle Siberia, Lithol. Miner. Resour., 2016,vol. 50, no. 4, pp. 144–169.

    Article  Google Scholar 

  51. Pokrovsky, B.G., Letnikova, E.F., and Samygin, S.G., Isotopic stratigraphy of the Bokson Group, Vendian–Cambrian of the Sayan Mountains, Stratigr. Geol. Correl., 1999, vol. 7, no. 3, pp. 229–246.

    Google Scholar 

  52. Pokrovskii, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems, Lithol. Miner. Resour., 2006a, vol. 41, no. 5, pp. 450–474.

    Article  Google Scholar 

  53. Pokrovskii, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, oxygen, strontium, and sulfur isotopic composition in the Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 2. Nature of carbonate with ultralow and ultrahigh 13C Values, Lithol. Miner. Resour., 2006b, vol. 41, no. 6, pp. 576–587.

    Article  Google Scholar 

  54. Ripperdan, R.L., Stratigraphic variation in marine carbonate carbon isotope ratios, Rev. Mineral., 2001, vol. 43, pp. 637–662.

    Article  Google Scholar 

  55. Saltzman, M.R. and Thomas, E., Carbon isotope stratigraphy, in The Geologic Time Scale, Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., Eds., Boston, USA: Elsevier, 2012, Ch. 11, pp. 207–233.

    Google Scholar 

  56. Semikhatov, M.A., Ovchinnikova, G.V., Gorokhov, I.M., Kuznetsov, A.B., Kaurova, O.K., and Petrov, P.Yu., Pb–Pb isochron age and Sr isotope signature of the Upper Yudoma carbonate sediments (Vendian of the Yudoma–Maya trough, Eastern Siberia), Dokl. Earth Sci., 2003, vol. 393, no. 1, pp. 1093–1097.

    Google Scholar 

  57. Semikhatov, M.A., Kuznetsov, A.B., Podkovyrov, V.N., Bartley, J.K., and Davydov, Yu.V., The Yudoma Group of stratotype area: C-isotope chemostratigraphic correlations and Yudomian–Vendian relation, Stratigr. Geol. Correl., 2004, vol. 12, no. 5, pp. 435–459.

    Google Scholar 

  58. Stratigrafiya neftegazonosnykh basseinov Sibiri. Rifei i vend Sibirskoi platformy i ee skladchatogo obramleniya (Stratigraphy of Petroleum Basins of Siberia. Riphean and Vendian of Siberian Platform and Its Folded Framing), Mel’nikov, N.V., Ed., Novosibirsk: GEO, 2005.

  59. Tostevin, R., Clarkson, M.O., Gangl, S., Shields, G.A., Wood, R.A., Bowyer, F., Penny, A.M., and Stirling, C.H., Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans, Earth Planet. Sci. Lett., 2019, vol. 506, pp. 104–112.

    Article  Google Scholar 

  60. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., and Strauss, H., 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 1999, vol. 161, pp. 59–88.

    Article  Google Scholar 

  61. Vetrova, N.I., Geochemistry and S- and Sr-chemostratigraphy of Late Cambrian carbonate deposits of the Siberian Platform (Khorbusuonka Group and Dashkin Formation. Cand. (Geol.-Mineral.) Dissertation, Novosibirsk, 2018.

  62. Vinogradov, V.I., Pokrovskii, B.G., Pustyl’nikov, A.M., Murav’ev, V.I., Shatskii, G.V., Bujakaite, M.I., and Lukanin, A.O., Isotope-geochemical Features and Age of Upper Cambrian Rocks in the Western Siberian Platform, Lit-ol. Miner. Resour., 1994, no. 4, pp. 49–76.

  63. Vishnevskaya, I.A. and Letnikova, E.F., Chemostratigraphy of the Vendian–Cambrian carbonate sedimentary cover of the Tuva-Mongolian microcontinent, Russ. Geol. Geophys., 2013, vol. 54, no. 6, pp. 567–586.

    Article  Google Scholar 

  64. Vishnevskaya, I.A., Letnikova, E.F., Vetrova, N.I., Kochnev, B.B., and Dril, S.I., Chemostratigraphy and detrital zircon geochronology of the Neoproterozoic Khorbusuonka Group, northeastern Siberian Platform, Gondwana Res., 2017, vol. 51, pp. 255–271.

    Article  Google Scholar 

  65. Zhang, F., Xiao, S., Kendall, B., Romaniello, S.J., Cui, H., Meyer, M., Gilleaudeau, G.J., Kaufman, A.J., and Anbar, A.D., Extensive marine anoxia during the terminal Ediacaran period, Science Advance, 2018, vol. 4, pp. 1–11.

    Google Scholar 

  66. Zhou, C. and Xiao, S., Ediacaran δ13C chemostratigraphy of South China, Chem. Geol., 2007, vol. 89, pp. 89–108.

    Article  Google Scholar 

  67. Zhu, M., Strauss, H., and Shields, G.A., From snowball Earth to the Cambrian bioradiation: calibration of Ediacaran–Cambrian Earth history of South China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007a, vol. 254, nos. 1–2, pp. 1–6.

    Article  Google Scholar 

  68. Zhu, M., Zhang, J., and Yang, A., Integrated Ediacaran (Sinian) chronostratigraphy of South China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007b, vol. 254, nos. 1–2, pp. 7–61.

    Article  Google Scholar 

  69. Zhu, B., Becker, H., Jiang, S.Y., Pi, D.H., Fischer-Godde, M., and Yang, J.H., Re–Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China, Precambrian Res., 2013, vol. 225, pp. 67–76.

    Article  Google Scholar 

  70. Zhu, M., Zhuravlev, A.Yu., Wood, R.A., Zhao, F., and Sukhov, S.S., A deep root for the Cambrian explosion: implications of new bio and chemostratigraphy from the Siberian Platform, Geology, 2017. https://doi.org/10.1130/G38865.1

  71. Zhuravleva, Z.A., Onkolity i katagrafii rifeya i nizhnego kembriya Sibiri i ikh stratigraficheskoe znachenie (Riphean and Lower Cambrian Oncolithes and Catagraphes of Siberia and Their Stratigraphic Significance), Moscow: Nauka, 1964 [in Russian].

Download references

ACKNOWLEDGMENTS

The authors are grateful to Director of the Olekma Reserve E.M. Gabyshev and Deputy Director for the research activity Yu. А Rozhkov for their help in organization of the fieldwork.

Funding

This work was performed within the framework of the plan of research works of the Geological Institute of the Russian Academy of Sciences and was supported by the Russian Foundation for Basic Research (project no. 19-05-00427).

Reviewers A.B. Kuznetsov, N.B. Kuznetsov, and E.F. Letnikova

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Pokrovsky.

Additional information

Translated by D. Voroshchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokrovsky, B.G., Bujakaite, M.I., Petrov, O.L. et al. The C, O, and Sr Isotope Chemostratigraphy of the Vendian (Ediacaran)–Cambrian Transition, Olekma River, Western Slope of the Aldan Shield. Stratigr. Geol. Correl. 28, 479–492 (2020). https://doi.org/10.1134/S086959382005007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959382005007X

Keywords:

Navigation