Skip to main content
Log in

Connectivity of joins, cohomological quantifier elimination, and an algebraic Toda’s theorem

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this article, we use cohomological techniques to obtain an algebraic version of Toda’s theorem in complexity theory valid over algebraically closed fields of arbitrary characteristic. This result follows from a general ‘connectivity’ result in cohomology. More precisely, given a closed subvariety \(X \subset {\mathbb {P}}^{n}\) over an algebraically closed field k, and denoting by \(\mathrm{J}^{[p]}(X) = \mathrm{J}(X,\mathrm{J}(X,\ldots ,\mathrm{J}(X,X)\cdots )\) the p-fold iterated join of X with itself, we prove that the restriction homomorphism on (singular or \(\ell \)-adic etale) cohomology \(\mathrm{H}^{i}({\mathbb {P}}^{N}) \rightarrow \mathrm{H}^{i}(\mathrm{J}^{[p]}(X))\), with \(N = (p+1)(n+1) - 1\), is an isomorphism for \(0 \le i < p\), and injective for \(i=p\). We also prove this result in the more general setting of relative joins for X over a base scheme S, where S is of finite type over k. We give several other applications of this connectivity result including a cohomological version of classical quantifier elimination in the first order theory of algebraically closed fields of arbitrary characteristic, and to obtain effective bounds on the Betti numbers of images of projective varieties under projection maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Here \({\mathbb {P}}^n\) is the usual n-dimensional projective space over k. Sometimes we denote this by \({\mathbb {P}}^n_k\) in order to make the base field explicit.

  2. Note that we define \(P(X)(T) = \sum \nolimits _{i \ge 0} \dim _{\mathbb {Q}_\ell } {{\,\mathrm{H}\,}}^i(X,\mathbb {Q}_\ell )T^i\) (2.31).

  3. We refer the reader who is unfamiliar with model theory terminology to the book [4] for all the necessary background that will be required in this article.

  4. Here, \({\mathbb {A}}^n\) denotes the usual n-dimensional affine space over k.

  5. Note that in loc. cit. it is shown that \(R\Gamma (X,R) \otimes ^{{\mathbb {L}}} R\Gamma (Y,R) \cong R\Gamma (X \times Y,R)\). This gives rise to the standard \(\mathrm{Tor}\) spectral sequence. If \(R ={\mathbb {Z}}/\ell ^n{\mathbb {Z}}\), then all \(\mathrm{Tor}^i\)’s vanish for \(i > 1\), and the spectral sequence gives the Kunneth short exact sequence.

References

  1. Altman, A.B., Kleiman, S.L.: Joins of schemes, linear projections. Compos. Math. 31(3), 309–343 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Adolphson, A., Sperber, S.: On the degree of the \(L\)-function associated with an exponential sum. Compos. Math. 68(2), 125–159 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Adolphson, A., Sperber, S.: On exponential sums in finite fields. II. Invent. Math. 47(1), 29–39 (1978)

    Article  MathSciNet  Google Scholar 

  4. Adolphson, A., Sperber, S.: A Course in Model Theory. Universitext, Springer, New York (2000). An introduction to contemporary mathematical logic, Translated from the French by Moses Klein and revised by the author

  5. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory, Algorithms and Computation in Mathematics, vol. 7. Springer, Berlin (2000)

    MATH  Google Scholar 

  6. Basu, S.: A complex analogue of Toda’s theorem. Found. Comput. Math. 12(3), 327–362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)., With a foreword by Richard M. Karp, With a foreword by Richard M. KarpWith a foreword by Richard M. Karp

    Book  MATH  Google Scholar 

  8. Barth, W., Larsen, M.E.: On the homotopy groups of complex projective algebraic manifolds. Math. Scand. 30, 88–94 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bombieri, E.: On exponential sums in finite fields. II. Invent. Math. 47(1), 29–39 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruns, W., Vetter, U.: Determinantal Rings. Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  11. Basu, S., Zell, T.: Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s theorem. Found. Comput. Math. 10(4), 429–454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohomologie \(l\)-adique et fonctions \(L\), Lecture Notes in Mathematics, vol. 589. Springer, Berlin (1977). Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), Edité par Luc Illusie

  13. Flenner, H., O’Carroll, L., Vogel, W.: Joins and Intersections. Springer Monographs in Mathematics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants and multidimensional determinants. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008, Reprint of the edition (1994)

  15. Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields. Theoret. Comput. Sci. 24(3), 239–277 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hartshorne, R., Speiser, R.: Local cohomological dimension in characteristic \(p\). Ann. Math. (2) 105(1), 45–79 (1977)

    MathSciNet  MATH  Google Scholar 

  17. Isik, M.U.: Complexity classes and completeness in algebraic geometry. Found. Comput. Math. 19, 245–258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. James, S.: Milne, Étale cohomology, Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980)

    Google Scholar 

  19. Katz, N.M.: Sums of Betti numbers in arbitrary characteristic. Finite Fields Appl. 7(1), 29–44 (2001). Dedicated to Professor Chao Ko on the occasion of his 90th birthday

    Article  MathSciNet  MATH  Google Scholar 

  20. Milnor, J.: On the Betti numbers of real varieties. Proc. Am. Math. Soc. 15, 275–280 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ogus, A.: On the formal neighborhood of a subvariety of projective space. Am. J. Math. 97(4), 1085–1107 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Berlin (1994)

    MATH  Google Scholar 

  23. Petrovskiĭ, I.G., Oleĭnik, O.A.: On the topology of real algebraic surfaces. Izvestiya Akad. Nauk SSSR. Ser. Mat. 13, 389–402 (1949)

    MathSciNet  Google Scholar 

  24. Poizat, B.: Les petits cailloux, Nur al-Mantiq wal-Marifah [Light of Logic and Knowledge], vol. 3, Aléas, Lyon (1995). Une approche modèle-théorique de l’algorithmie [A model-theoretic approach to algorithms]

  25. Sudhir, R.: Ghorpade and Gilles Lachaud, Corrigenda and addenda: Étale cohomology, Lefschetz theorems and number of points of singular varieties over finite fields [mr1988974]. Mosc. Math. J. 9(2), 431–438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. The Stacks Project Authors, The Stacks Project. https://stacks.math.columbia.edu (2020)

  27. Thom, R.: Sur l’homologie des variétés algébriques réelles, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 255–265. Princeton Univ. Press, Princeton (1965)

    Book  Google Scholar 

  28. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Valiant, L.G.: An algebraic approach to computational complexity. Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Warsaw, 1983) (Warsaw). PWN, pp. 1637–1643 (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saugata Basu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Saugata Basu would like to acknowledge support from the National Science Foundation award CCF-1618981, DMS-1620271, and CCF-1910441. Deepam Patel would like to acknowledge support from the National Science Foundation award DMS-1502296.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Patel, D. Connectivity of joins, cohomological quantifier elimination, and an algebraic Toda’s theorem. Sel. Math. New Ser. 26, 71 (2020). https://doi.org/10.1007/s00029-020-00596-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00596-0

Mathematics Subject Classification

Navigation