Skip to main content
Log in

Investigating the journal impact along the columns and rows of the publication-citation matrix

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Journal impact factors and diachronic journal impact factors are currently calculated with the data along the rows and columns of the publication-citation matrix of a journal, respectively. The average publication-citation matrix can be obtained by dividing the elements of the publication-citation matrix by the number of papers published by a journal in a given year. Along the rows and columns of the publication-citation matrix, we found that journals in the same subject category can have quite different citation patterns. In particular, some journals have a prolonged impact. To effectively reflect the impact of individual journals with different citation patterns on the scientific community, we propose an integral synchronic journal impact factor that combines the features of the existing journal impact factors and diachronic journal impact factors. This approach utilizes the data along the rows of the publication-citation matrix and the average citations among the papers published in individual years. The length of the citation window can be flexibly set to balance accuracy and timeliness based on citations. Modifications of the proposed indicator considering normalization, the importance of citation sources and a geometric averaging mechanism are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The newly released CiteScore uses a 4-year citation window.

References

  • Alguliyev, R. M., & Aliguliyev, R. M. (2017). Modifications to the journal impact factor. COLLNET Journal of Scientometrics and Information Management, 11(1), 25–43.

    Article  Google Scholar 

  • Alguliyev, R. M., Aliguliyev, R. M., & Ismayilova, N. T. (2015). Impact factor weighted by 5-year impact factor. Problems of Information Technology, 2, 31–40.

    Google Scholar 

  • Amin, M., & Mabe, M. (2000). Impact factors: Use and abuse. Perspectives in Publishing, 1, 1–6.

    Google Scholar 

  • Batista, P. D., Campiteli, M. G., & Kinouchi, O. (2006). Is it possible to compare researchers with different scientific interests? Scientometrics, 68(1), 179–189.

    Article  Google Scholar 

  • Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.

    Article  Google Scholar 

  • Bornmann, L., & Marx, W. (2015). Methods for the generation of normalized citation impact scores in bibliometrics: Which method best reflects the judgements of experts? Journal of Informetrics, 9(2), 408–418.

    Article  Google Scholar 

  • Burmister, D. M. (1945). The general theory of stresses and displacements in layered systems. I. Journal of Applied Physics, 16(2), 89–94.

    Article  Google Scholar 

  • Davies, P. W., & Brink, F. (1942). Microelectrodes for measuring local oxygen tension in animal tissues. Review of Scientific Instruments, 13(12), 524–533.

    Article  Google Scholar 

  • Falagas, M. E., & Alexiou, V. G. (2008). The top-ten in journal impact factor manipulation. ArchivumImmunologiaeettherapiaeExperimentalis, 56(4), 223–226.

    Google Scholar 

  • Ferrer-Sapena, A., Sánchez-Pérez, E. A., González, L. M., Peset, F., & Aleixandre-Benavent, R. (2015). Mathematical properties of weighted impact factors based on measures of prestige of the citing journals. Scientometrics, 105(3), 2089–2108.

    Article  Google Scholar 

  • Frandsen, T. F., & Rousseau, R. (2005). Article impact calculated over arbitrary periods. Journal of the American Society for Information Science and Technology, 56(1), 58–62.

    Article  Google Scholar 

  • Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178(4060), 471–479.

    Article  Google Scholar 

  • Garfield, E. (1977). The ‘obliteration phenomenon’ in science–and the advantage of being obliterated. Essays of an Information Scientist, 2, 396–398.

    Google Scholar 

  • Garfield, E. (1980). Premature discovery or delayed recognition: Why? Essays of an Information Scientist, 4, 488–493.

    Google Scholar 

  • Glänzel, W., Schlemmer, B., & Thijs, B. (2003). Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon. Scientometrics, 58(3), 571–586.

    Article  Google Scholar 

  • Guth, E. (1945). Theory of filler reinforcement. Journal of Applied Physics, 16(1), 20–25. https://doi.org/10.1063/1.1707495.

    Article  Google Scholar 

  • Habibzadeh, F., & Yadollahie, M. (2008). Journal weighted impact factor: A proposal. Journal of Informetrics, 2(2), 164–172.

    Article  Google Scholar 

  • Horton, C. W., & Rogers, F. T. (1945). Convection currents in a porous medium. Journal of Applied Physics, 16(6), 367–370.

    Article  MathSciNet  Google Scholar 

  • Ingwersen, P. (2012). The pragmatics of a diachronic journal impact factor. Scientometrics, 92(2), 319–324.

    Article  Google Scholar 

  • Ingwersen, P., Larsen, B., Rousseau, R., & Russell, J. (2001). The publication-citation matrix and its derived quantities. Chinese Science Bulletin, 46(6), 524–528.

    Article  Google Scholar 

  • Jacso, P. (2009). Five-year impact factor data in the Journal Citation Reports. Online Information Review, 33(3), 603–614.

    Article  Google Scholar 

  • Krishna, V. G., Rasiah, R., & Ratnavelu, K. (2016). Measuring scientific performance of ISI indexed journals in economics: The impact of synchronous and diachronous impact factors. Quality and Quantity, 50, 2185–2215.

    Article  Google Scholar 

  • Leydesdorff, L., & Opthof, T. (2010). Scopus's source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations. Journal of the American Society for Information Science and Technology, 61(11), 2365–2369.

    Article  Google Scholar 

  • Liu, X. Z., & Fang, H. (2020). A comparison among citation-based journal indicators and their relative changes with time. Journal of Informetrics, 14(1), 101007. https://doi.org/10.1016/j.joi.2020.101007.

    Article  Google Scholar 

  • Merchant, M. E. (1945a). Mechanics of the metal cutting process I. Orthogonal cutting and a type-2 chip. Journal of Applied Physics, 16(5), 267–275.

    Article  Google Scholar 

  • Merchant, M. E. (1945b). Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. Journal of Applied Physics, 16(6), 318–324.

    Article  Google Scholar 

  • Millikan, G. A. (1942). Theoximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man. Review of Scientific Instruments, 13(10), 434–444.

    Article  Google Scholar 

  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188–5192.

    Article  MathSciNet  Google Scholar 

  • Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17268–17272.

    Article  Google Scholar 

  • Smith, L. (1981). Citation analysis. Library Trends, 30(1), 83–106.

    Google Scholar 

  • Thelwall, M., & Fairclough, R. (2015). Geometric journal impact factors correcting for individual highly cited articles. Journal of Informetrics, 9(2), 263–272.

    Article  Google Scholar 

  • Tijssen, R. J., Visser, M. S., & Van Leeuwen, T. N. (2002). Benchmarking international scientific excellence: Are highly cited research papers an appropriate frame of reference? Scientometrics, 54(3), 381–397.

    Article  Google Scholar 

  • van Leeuwen, T. N., Visser, M. S., Moed, H. F., Nederhof, T. J., & Van Raan, A. F. (2003). The Holy Grail of science policy: Exploring and combining bibliometrictools in search of scientific excellence. Scientometrics, 57(2), 257–280.

    Article  Google Scholar 

  • Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, 118, 558–560.

    Article  Google Scholar 

  • Vonnegut, B. (1942). Rotating bubble method for the determination of surface and interfacial tensions. Review of Scientific Instruments, 13(1), 6–9.

    Article  Google Scholar 

  • Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563–565.

    Article  Google Scholar 

  • Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391.

    Article  Google Scholar 

  • Waltman, L., Van Eck, N. J., Van Leeuwen, T. N., Visser, M. S., & Van Raan, A. F. (2011). Towards a new crown indicator: An empirical analysis. Scientometrics, 87(3), 467–481.

    Article  Google Scholar 

  • Wang, J. (2013). Citation time window choice for research impact evaluation. Scientometrics, 94(3), 851–872.

    Article  Google Scholar 

  • Zong, Z. J., Liu, X. Z., & Fang, H. (2018). Sleeping beauties with no prince based on the co-citation criterion. Scientometrics, 117(3), 1841–1852.

    Article  Google Scholar 

  • Życzkowski, K. (2010). Citation graph, weighted impact factors and performance indices. Scientometrics, 85(1), 301–315.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H. Investigating the journal impact along the columns and rows of the publication-citation matrix. Scientometrics 125, 2265–2282 (2020). https://doi.org/10.1007/s11192-020-03715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-020-03715-y

Keywords

Navigation