Skip to main content
Log in

Thermochemical interaction of wood and polyethylene during co-oxidation in the conditions of thermogravimetric analysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, using the methods of thermal analysis, we investigated the features of the oxidative decomposition of mixtures of polyethylene and sawdust (in different mass ratios). The results show that during the mixtures decomposition, the effects of interaction between wood and polyethylene are observed, which, apparently, are associated with the chain nature of the oxidation reactions of both components. It was found that the oxidation of mixtures with a polyethylene fraction of 20% or less proceeds without the formation of a significant amount of products of incomplete decomposition of hydrocarbon chains. Thermogravimetric and calorimetric data are compared with data from mass spectrometric analysis of decomposition products. These data indicate competition between the oxidation and thermal cracking of polyethylene. The presence of biomass due to its high reactivity contributes to an increase in the proportion of oxidation in the total decomposition of polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PE:

Polyethylene

TG:

Thermogravimetry

DSC:

Differential scanning calotimetry

References

  1. Malinauskaite J, Jouhara H, Czajczynska D, Stanchev P, Katsou E, Rostkowski P, Thorne RJ, Colon J, Ponsa S, Al-Mansour F, Anguilano L, Krzyzynska R, Lopez IC, Vlasopoulos A, Spencer N (2017) Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 141:2013–2044. https://doi.org/10.1016/j.energy.2017.11.128

    Article  Google Scholar 

  2. Mwanza BG, Mbohwa C (2017) Drivers to sustainable plastic solid waste recycling: a review. Proc Manuf 8:649–656. https://doi.org/10.1016/j.promfg.2017.02.083

    Article  Google Scholar 

  3. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Composites B 115:409–422. https://doi.org/10.1016/j.compositesb.2016.09.013

    Article  CAS  Google Scholar 

  4. Arena U (2012) Process and technological aspects of municipal solid waste gasification: a review. Waste Manag 32:625–639. https://doi.org/10.1016/j.wasman.2011.09.025

    Article  CAS  PubMed  Google Scholar 

  5. Wong SL, Ngadi N, Abdullah TAT, Inuwa IM (2015) Current state and future prospects of plastic waste as source of fuel: a review. Renew Sust Energy Rev 50:1167–1180. https://doi.org/10.1016/j.rser.2015.04.063

    Article  CAS  Google Scholar 

  6. Ardolino F, Lodato C, Astrup TF, Arena U (2018) Energy recovery from plastic and biomass waste by means of fluidized bed gasification: a life cycle inventory model. Energy 165B:299–314. https://doi.org/10.1016/j.energy.2018.09.158

    Article  CAS  Google Scholar 

  7. Castaldi M, van Deventer J, Lavoie JM, Legrand J, Nzihou A, Pontikes Y, Py X, Vandecasteele C, Vasuedevan PT (2017) Progress and prospects in the field of biomass and waste to energy and added-value materials. Waste Biomass Valor 8:1875–1884. https://doi.org/10.1007/s12649-017-0049-0

    Article  CAS  Google Scholar 

  8. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Liu J, Shen F, Zhang Z, Dong Y (2018) Release of Na from sawdust during air and oxy-fuel combustion: a combined temporal detection, thermodynamics and kinetic study. Fuel 221:249–256. https://doi.org/10.1016/j.fuel.2018.02.116

    Article  CAS  Google Scholar 

  10. Horton SR, Zhang Y, Mohr R, Petrocelli F, Klein MT (2016) Implementation of a molecular-level kinetic model for plasma-arc municipal solid waste gasification. Energy Fuels 30:7904–7915. https://doi.org/10.1021/acs.energyfuels.6b00899

    Article  CAS  Google Scholar 

  11. Zhou X, Broadbelt LJ, Vinu R (2016) Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. Adv Chem Eng 49:95–198. https://doi.org/10.1016/bs.ache.2016.09.002

    Article  CAS  Google Scholar 

  12. Ranzi E, Faravelli T, Manenti F (2016) Pyrolysis, gasification, and combustion of solid fuels. Adv Chem Eng 49:1–94. https://doi.org/10.1016/bs.ache.2016.09.001

    Article  CAS  Google Scholar 

  13. Zhou C, Zhang Q, Arnold L, Yang W, Blasiak W (2013) A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels. Appl Energy 107:173–182. https://doi.org/10.1016/j.apenergy.2013.02.029

    Article  CAS  Google Scholar 

  14. Salganskaya MV, Glazov SV, Salganskii EA, Zholudev AF (2010) Filtration combustion of charcoal-polyethylene systems. Russ J Phys Chem B 4:928–933. https://doi.org/10.1134/S1990793110060096

    Article  Google Scholar 

  15. Donskoi IG (2018) Process simulation of the co-gasification of wood and polymeric materials in a fixed bed. Solid Fuel Chem 52:121–127. https://doi.org/10.3103/S0361521918020027

    Article  CAS  Google Scholar 

  16. Malkow T (2004) Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally friendly sound MSW disposal. Waste Manag 24:53–79. https://doi.org/10.1016/S0956-053X(03)00038-2

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez J, Kumagai S, Wu C, Yoshioka T, Bilbao J, Olazar M, Williams PT (2014) Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int J Hydrogen Energy 39:10883–10891. https://doi.org/10.1016/j.ijhydene.2014.04.189

    Article  CAS  Google Scholar 

  18. Chen D, Yin L, Wang H, He P (2014) Pyrolysis technologies for municipal solid waste: a review. Waste Manag 34:2466–2486. https://doi.org/10.1016/j.wasman.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  19. Sipra AT, Gao N, Sarwar H (2018) Municipal solid waste (MSW) pyrolysis for bio-fuel production: a review of effects of MSW components and catalysts. Fuel Proc Technol 175:131–147. https://doi.org/10.1016/j.fuproc.2018.02.012

    Article  CAS  Google Scholar 

  20. Ohmukai Y, Hasegawa I, Mae K (2008) Pyrolysis of the mixture of biomass and plastics in countercurrent flow reactor part I: experimental analysis and modeling of kinetics. Fuel 87:3105–3111. https://doi.org/10.1016/j.fuel.2008.04.005

    Article  CAS  Google Scholar 

  21. Jin Q, Wang X, Li S, Mikulcic H, Besenic T, Deng S, Vujanovic M, Tan H, Kumfer BM (2019) Synergistic effects during co-pyrolysis of biomass and plastic: gas, tar, soot, char products and thermogravimetric study. J Energy Inst 92:108–117. https://doi.org/10.1016/j.joei.2017.11.001

    Article  CAS  Google Scholar 

  22. Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A (2017) A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag 197:177–198. https://doi.org/10.1016/j.jenvman.2017.03.084

    Article  CAS  Google Scholar 

  23. Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M (2018) Recent advances in the gasification of waste plastics. A critical overview. Renew Sust Energy Rev 82:576–596. https://doi.org/10.1016/j.rser.2017.09.032

    Article  CAS  Google Scholar 

  24. Glushkov DO, Paushkina KK, Shabardin DP (2019) Co-combustion of coal processing waste, oil refining waste and municipal solid waste: mechanism, characteristics, emissions. Chemosphere 240:124892. https://doi.org/10.1016/j.jenvman.2018.10.067

    Article  CAS  PubMed  Google Scholar 

  25. Vershinina KYu, Shlegel NE, Strizhak PA (2019) Impact of environmentally attractive additives on the ignition delay times of slurry fuels: experimental study. Fuel 238:275–288. https://doi.org/10.1016/j.fuel.2018.10.132

    Article  CAS  Google Scholar 

  26. Hu B, Huang Q, Chi Y, Yan J (2019) Polychlorinated dibenzo-p-dioxins and dibenzofurans in a three-stage municipal solid waste gasifier. J Clean Prod 218:920–929. https://doi.org/10.1016/j.jclepro.2019.01.336

    Article  CAS  Google Scholar 

  27. Aboulkas A, Elharfi K, El Bouadili A, Nadifiyine M, Benchanaa M, Mokhlisse A (2009) Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Proc Technol 90:722–728. https://doi.org/10.1016/j.fuproc.2009.01.016

    Article  CAS  Google Scholar 

  28. Kumagai S, Fujita K, Kameda T, Yoshioka T (2016) Interactions of beech wood–polyethylene mixtures during co-pyrolysis. J Anal App Pyrolysis 122:531–540. https://doi.org/10.1016/j.jaap.2016.08.012

    Article  CAS  Google Scholar 

  29. Oyedun AO, Gebreegziabher T, Hui CW (2013) Co-pyrolysis of biomass and plastics waste: a modelling approach. Chem Eng Trans 35:883–888. https://doi.org/10.3303/CET1335147

    Article  Google Scholar 

  30. Sophonrat N, Yang W (2017) Effect of mixing methods of polyethylene and cellulose on volatile products from its co-pyrolysis. Energy Proc 142:315–320. https://doi.org/10.1016/j.egypro.2017.12.050

    Article  CAS  Google Scholar 

  31. Xiong S, Zhuo J, Zhou H, Pang R, Yao Q (2015) Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. J Anal Appl Pyrolysis 112:66–73. https://doi.org/10.1016/j.jaap.2015.02.020

    Article  CAS  Google Scholar 

  32. Burra KG, Gupta AK (2018) Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes. Appl Energy 220:408–418. https://doi.org/10.1016/j.apenergy.2018.03.117

    Article  CAS  Google Scholar 

  33. Zhou L, Wang Y, Huang Q, Cai J (2006) Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Proc Tech 87:963–969. https://doi.org/10.1016/j.fuproc.2006.07.002

    Article  CAS  Google Scholar 

  34. Uzoejinwa BB, He X, Wang S, Abomohra AEF, Hu Y, Wang Q (2018) Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production:recent progress and future directions elsewhere worldwide. Energy Conserv Manag 163:468–492. https://doi.org/10.1016/j.enconman.2018.02.004

    Article  CAS  Google Scholar 

  35. Sharypov VI, Marin N, Beregovtsova NG, Baryshnikov SV, Kuznetsov BN, Cebolla VL, Weber JV (2002) Co-pyrolysis of wood biomass and synthetic polymer mixtures Part I: influence of experimental conditions on the evolution of solids, liquids and gases. J Anal Appl Pyrolysis 64:15–28. https://doi.org/10.1016/S0165-2370(01)00167-X

    Article  CAS  Google Scholar 

  36. Ahmed II, Nipattummakul N, Gupta AK (2011) Characteristics of syngas from co-gasification of polyethylene and woodchips. Appl Energy 88:165–174. https://doi.org/10.1016/j.apenergy.2010.07.007

    Article  CAS  Google Scholar 

  37. Abnisa F, Daud WMAW (2014) A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Conserv Manag 87:71–85. https://doi.org/10.1016/j.enconman.2014.07.007

    Article  CAS  Google Scholar 

  38. Martinez JD, Veses A, Mastral AM, Murillo E, Navarro MA, Puy N, Artigues A, Bartoli J, Garcia T (2013) Co-pyrolysis of biomass with waste tyres: upgrading of liquid bio-fuel. Fuel Proc Technol 119:263–271. https://doi.org/10.1016/j.fuproc.2013.11.015

    Article  CAS  Google Scholar 

  39. Pinto F, Franco C, Andre RN, Miranda M, Gulyurtlu I, Cabrita I (2002) Co-gasification study of biomass mixed with plastic wastes. Fuel 81:291–297. https://doi.org/10.1016/S0016-2361(01)00164-8

    Article  CAS  Google Scholar 

  40. Meng Q, Chen X, Bu C, Ma J (2014) Controlled air oxidation of plastic and biomass in a packed bed reactor. Chem Eng Technol 37:43–48. https://doi.org/10.1002/ceat.201300310

    Article  CAS  Google Scholar 

  41. Dewangan A, Pradhan D, Singh RK (2016) Co-pyrolysis of sugarcane bagasse and low-density polyethylene: influence of plastic on pyrolysis product yield. Fuel 185:508–516. https://doi.org/10.1016/j.fuel.2016.08.011

    Article  CAS  Google Scholar 

  42. Block C, Ephraim A, Weiss-Hortala E, Minh DP, Nzihou A, Vandercasteele C (2019) Co-pyrogasification of plastics and biomass, a review. Waste Biomass Valor 10:483–509. https://doi.org/10.1007/s12649-018-0219-8

    Article  CAS  Google Scholar 

  43. Ephraim A, Minh DP, Lebonnois D, Pelegrina C, Sharrock P, Nzihou A (2018) Co-pyrolysis of wood and plastics: influence of plastic type and content on product yield, gas composition and quality. Fuel 231:110–117. https://doi.org/10.1016/j.fuel.2018.04.140

    Article  CAS  Google Scholar 

  44. Lin X, Kong L, Cai H, Zhang Q, Bi D, Yi W (2019) Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS. Fuel Proc Technol 191:71–78. https://doi.org/10.1016/j.fuproc.2019.03.015

    Article  CAS  Google Scholar 

  45. Van Kasteren JMN (2006) Co-gasification of wood and polyethylene with the aim of CO and H2 production. J Mater Cycles Waste Manag 8:95–98. https://doi.org/10.1007/s10163-006-0150-0

    Article  CAS  Google Scholar 

  46. Mastelone ML, Zaccariello L, Santoro D, Arena U (2012) The O2-enriched air gasification of coal, plastics and wood in a fluidized bed reactor. Waste Manag 32:733–742. https://doi.org/10.1016/j.wasman.2011.09.005

    Article  CAS  Google Scholar 

  47. Narobe M, Golob J, Klinar D, Francetic V, Likozar B (2014) Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances. Biores Technol 162:21–29. https://doi.org/10.1016/j.biortech.2014.03.121

    Article  CAS  Google Scholar 

  48. Cardoso J, Silva V, Eusebio D (2019) Process optimization and robustness analysis of municipal solid waste gasification using air-carbon dioxide mixtures as gasifying agent. Int J Energy Res 43:4715–4728. https://doi.org/10.1002/er.4611

    Article  CAS  Google Scholar 

  49. Cho M-H, Mun T-Y, Choi Y-K, Kim J-S (2014) Two-stage air gasification of mixed plastic waste: olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal. Energy 70:128–134. https://doi.org/10.1016/j.energy.2014.03.097

    Article  CAS  Google Scholar 

  50. Robinson T, Bronson B, Gogolek P, Mehrani P (2016) Comparison of the air-blown bubbling fluidized bed gasification of wood and wood–PET pellets. Fuel 178:263–271. https://doi.org/10.1016/j.fuel.2016.03.038

    Article  CAS  Google Scholar 

  51. Lin C-L, Weng W-C (2017) Effects of different operating parameters on the syngas composition in a two-stage gasification process. Renew Energy 109:135–143. https://doi.org/10.1016/j.renene.2017.03.019

    Article  CAS  Google Scholar 

  52. Campuzano F, Brown RC, Martinez JD (2019) Auger reactors for pyrolysis of biomass and wastes. Renew Sust Energy Rev 102:372–409. https://doi.org/10.1016/j.rser.2018.12.014

    Article  CAS  Google Scholar 

  53. Nunes SM, Paterson N, Dugwell DR, Kandiyoti R (2007) Tar formation and destruction in a simulated downdraft, fixed-bed gasifier: reactor design and initial results. Energy Fuels 21:3028–3035. https://doi.org/10.1021/ef070137b

    Article  CAS  Google Scholar 

  54. Garcia-Bacaioca P, Mastral JF, Ceamanos J, Berrueco C, Serrano S (2008) Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier. Biores Technol 99:5485–5491. https://doi.org/10.1016/j.biortech.2007.11.003

    Article  CAS  Google Scholar 

  55. Vonk G, Piriou B, Dos Santos PF, Wolbert D, Vaitilingom G (2019) Comparative analysis of wood and solid recovered fuels gasification in a downdraft fixed bed reactor. Waste Manag 85:106–120. https://doi.org/10.1016/j.wasman.2018.12.023

    Article  CAS  PubMed  Google Scholar 

  56. Ouadi M, Brammer JG, Kay M, Hornung A (2013) Fixed bed downdraft gasification of paper industry wastes. App Energy 103:692–699. https://doi.org/10.1016/j.apenergy.2012.10.038

    Article  CAS  Google Scholar 

  57. Madadian E, Crowe C, Lefsrud M (2017) Evaluation of composite fiber-plastics biomass clinkering under the gasification conditions. J Clean Prod 164:137–145. https://doi.org/10.1016/j.jclepro.2017.06.070

    Article  CAS  Google Scholar 

  58. Couto ND, Silva VB, Rouboa A (2016) Thermodynamic evaluation of Portuguese municipal solid waste gasification. J Clean Prod 139:622–635. https://doi.org/10.1016/j.jclepro.2016.08.082

    Article  CAS  Google Scholar 

  59. Kolibaba OB, Sokolsky AI, Gabitov RN (2017) Investigation of solid organic waste processing by oxidative pyrolysis. J Phys Conf Ser 891:012117. https://doi.org/10.1088/1742-6596/891/1/012117

    Article  CAS  Google Scholar 

  60. Wang X, Ma D, Jin Q, Deng S, Stancin H, Tan H, Mikulcic H (2019) Synergistic effects of biomass and polyurethane co-pyrolysis on the yield, reactivity, and heating value of biochar at high temperatures. Fuel Proc Technol 194:106–127. https://doi.org/10.1016/j.fuproc.2019.106127

    Article  CAS  Google Scholar 

  61. Ma W, Rajput G, Pan M, Lin F, Zhong L, Chen G (2019) Pyrolysis of typical MSW components by Py-GC/MS and TG-FTIR. Fuel 251:693–708. https://doi.org/10.1016/j.fuel.2019.04.069

    Article  CAS  Google Scholar 

  62. Korobeinichev OP, Paletsky AA, Gonchikzhapov MB, Glaznev RK, Gerasimov IE, Naganovsky YK, Shundrina IK, Snegirev AY, Vinu R (2019) Kinetics of thermal decomposition of PMMA at different heating rates and in a wide temperature range. Thermochim Acta 671:17–25. https://doi.org/10.1016/j.tca.2018.10.019

    Article  CAS  Google Scholar 

  63. Chen R, Li Q, Xu X, Zhang D (2019) Comparative pyrolysis characteristics of representative commercial thermosetting plastic waste in inert and oxygenous atmosphere. Fuel 246:212–221. https://doi.org/10.1016/j.fuel.2019.02.129

    Article  CAS  Google Scholar 

  64. Iring M, Tudos F (1990) Thermal oxidation of polyethylene and polypropylene: effects of chemical structure and reaction conditions on the oxidation process. Prog Polym Sci 15:217–262. https://doi.org/10.1016/0079-6700(90)90029-Z

    Article  CAS  Google Scholar 

  65. Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784. https://doi.org/10.1002/1521-3935(20010301)202:6<775:aid-macp775>3.0.co;2-g

    Article  CAS  Google Scholar 

  66. Bravo A, Hotchkiss JH (1993) Identification of volatile compounds resulting from the thermal oxidation of polyethylene. J Appl Polym Sci 47:1741–1748. https://doi.org/10.1002/app.1993.070471004

    Article  CAS  Google Scholar 

  67. Goncalves CK, Tenorio JAS, Levendis YA, Carlson JB (2008) Emissions from the premixed combustion of gasified polyethylene. Energy Fuels 22:372–381. https://doi.org/10.1021/ef700379c

    Article  CAS  Google Scholar 

  68. Bockhorn H, Hornung A, Hornung U, Schawaller D (1999) Kinetic study on the thermal degradation of polypropylene and polyethylene. J Anal App Pyrolysis 48:93–109. https://doi.org/10.1016/S0165-2370(98)00131-4

    Article  CAS  Google Scholar 

  69. Gu J, Fan H, Wang Y, Zhang Y, Yuan H, Chen Y (2020) Co-pyrolysis of xylan and high-density polyethylene: product distribution and synergistic effects. Fuel 267:116896. https://doi.org/10.1016/j.fuel.2019.116896

    Article  CAS  Google Scholar 

  70. Kozlov A, Svishchev D, Donskoy I, Shamansky V (2015) Impact of gas-phase chemistry on the composition of biomass pyrolysis products. J Therm Anal Calorim 122:1089–1098. https://doi.org/10.1007/s10973-015-4951-z

    Article  CAS  Google Scholar 

  71. Zenkevich IG, Ioffe BV (1986) Interpretation of mass spectra of organic substances. Khimiya, Leningrad (in Russian)

    Google Scholar 

  72. Zheng X, Chen C, Ying Z, Wang B, Chi Y (2017) Py-GC/MS study on rar formation characteristics of MSW key component pyrolysis. Waste Biomass Valor 8:313–319. https://doi.org/10.1007/s12649-016-9596-z

    Article  CAS  Google Scholar 

  73. Donskoy IG (2020) Mathematical modelling of the agglomeration in a reactive porous medium with variable permeability. J Phys Conf Ser 1565:012101. https://doi.org/10.1088/1742-6596/1565/1/012101

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR according to the research project № 19-08-00774. Equipment of the multi-access scientific center “High Temperature Circuit” was used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor G. Donskoy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donskoy, I.G., Kozlov, A.N., Kozlova, M.A. et al. Thermochemical interaction of wood and polyethylene during co-oxidation in the conditions of thermogravimetric analysis. Reac Kinet Mech Cat 131, 845–857 (2020). https://doi.org/10.1007/s11144-020-01880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01880-y

Keywords

Navigation