Skip to main content
Log in

Optimal qubit-bases for preserving two-qubit entanglement against Pauli noises

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Environment-induced decoherence would shorten the transmission distance or storage time of entangled states. Enhancing the intrinsic robustness and prolonging the disentangling time of entangled states are thus of importance. We here study the problem of optimal qubit-basis under which a two-qubit state has maximal residual entanglement or longest entanglement lifetime in general Pauli channels with the probabilities of three types of errors being not all the same. It is shown that the optimal qubit-bases are not the same in different cases. The advantages of the entangled states with optimal qubit-bases are obvious, e.g., sudden death of entanglement could be avoided. These results are expected to serve entanglement-based quantum protocols of which the real-world success or high-quality implementation relies on the longevity of entanglement in two-particle or multi-particle quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Vedral, V.: Quantum entanglement. Nat. Phys. 10, 256–258 (2014)

    Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Pan, J.W., Chen, Z.B., Lu, C.Y., et al.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)

    ADS  Google Scholar 

  5. Lo Franco, R., Compagno, G.: Indistinguishability of elementary systems as a resource for quantum information processing. Phys. Rev. Lett. 120, 240403 (2018)

    ADS  Google Scholar 

  6. Zurek, W.H.: Decoherence, einselection and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–776 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)

    ADS  Google Scholar 

  8. Mei, F., Yu, Y.F., Feng, X.L., Zhang, Z.M., Oh, C.H.: Quantum entanglement distribution with hybrid parity gate. Phys. Rev. A 82, 052315 (2010)

    ADS  Google Scholar 

  9. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014)

    ADS  Google Scholar 

  10. Dong, Q., Torres-Arenas, A.J., Sun, G.H., Dong, S.H.: Tetrapartite entanglement features of W-class state in uniform acceleration. Front. Phys. 15, 11602 (2020)

    ADS  Google Scholar 

  11. Qiang, W.C., Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Dong, S.H.: Entanglement property of the Werner state in accelerated frames. Quantum Inf. Process. 18, 314 (2019)

    ADS  MathSciNet  Google Scholar 

  12. Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Toutounji, M., Dong, S.H.: Tripartite entanglement measures of generalized GHZ state in uniform acceleration. Chin. Phys. Lett. 36, 100301 (2019)

    ADS  Google Scholar 

  13. Torres-Arenas, A.J., López-Zún̈iga, E.O., Saldan̈a-Herrera, J.A., et al.: Tetrapartite entanglement measures of W-class in noninertial frames. Chin. Phys. B 28, 070301 (2019)

    ADS  Google Scholar 

  14. Hu, J., Yu, H.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)

    ADS  MathSciNet  Google Scholar 

  15. Chaves, R., Brask, J.B., Markiewicz, M., Kołodyński, J., Acín, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. 111, 120401 (2013)

    ADS  Google Scholar 

  16. Cavalcanti, D., Skrzypczyk, P., Šupić, I.: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017)

    ADS  Google Scholar 

  17. Masanes, L.: All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Piani, M., Watrous, J.: All entangled states are useful for channel discrimination. Phys. Rev. Lett. 102, 250501 (2009)

    ADS  MathSciNet  Google Scholar 

  19. Dodd, P.J., Halliwell, J.J.: Disentanglement and decoherence by open system dynamics. Phys. Rev. A 69, 052105 (2004)

    ADS  MathSciNet  Google Scholar 

  20. Santos, M.F., Milman, P., Davidovich, L., Zagury, N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. A 73, 040305 (2006)

    ADS  Google Scholar 

  21. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Almeida, M.P., de Melo, F., Hor-Meyll, M., et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    ADS  Google Scholar 

  23. Duan, L.M., Monroe, C.: Quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010)

    ADS  Google Scholar 

  24. Mascarenhas, E., Cavalcanti, D., Vedral, V., Santos, M.F.: Physically realizable entanglement by local continuous measurements. Phys. Rev. A 83, 022311 (2011)

    ADS  Google Scholar 

  25. Hartmann, L., Dür, W., Briegel, H.J.: Steady-state entanglement in open and noisy quantum systems Phys. Rev. A 74, 052304 (2006)

    Google Scholar 

  26. Carvalho, A.R.R., Reid, A.J.S., Hope, J.J.: Controlling entanglement by direct quantum feedback. Phys. Rev. A 78, 012334 (2008)

    ADS  Google Scholar 

  27. Platzer, F., Mintert, F., Buchleitner, A.: Optimal dynamical control of many-body entanglement. Phys. Rev. Lett. 105, 020501 (2010)

    ADS  Google Scholar 

  28. Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    ADS  Google Scholar 

  29. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Google Scholar 

  30. Xu, J.S., Sun, K., Li, C.F., et al.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    ADS  Google Scholar 

  31. Terhal, B.M.: Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015)

    ADS  MathSciNet  Google Scholar 

  32. Orieux, A., D’Arrigo, A., Ferranti, G., et al.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

    Google Scholar 

  33. Man, Z.X., Xia, Y.J., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    ADS  Google Scholar 

  34. Ong, E.T.S., Chew, L.Y.: The effect of spin squeezing on the entanglement entropy of kicked tops. Entropy 18, 116 (2016)

    ADS  Google Scholar 

  35. Lo Franco, R.: Nonlocality threshold for entanglement under general dephasing evolutions: a case study. Quantum Inf. Process. 15, 2393–2404 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Mortezapour, A., Naeimi, G., Lo Franco, R.: Coherence and entanglement dynamics of vibrating qubits. Opt. Commun. 424, 26–31 (2018)

    ADS  Google Scholar 

  37. Mortezapour, A., Lo Franco, R.: Protecting quantum resources via frequency modulation of qubits in leaky cavities. Sci. Rep. 8, 14304 (2018)

    ADS  Google Scholar 

  38. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    ADS  Google Scholar 

  40. Czechlewski, M., Grudka, A., Ishizaka, S., Wójcik, A.: Entanglement purification protocol for amixture of a pure entangled state and a pure product state. Phys. Rev. A 80, 014303 (2009)

    ADS  Google Scholar 

  41. Wang, X.W., Tang, S.Q., Yuan, J.B., Zhang, D.Y.: Distilling perfect GHZ states from two copies of non-GHZ-diagonal mixed states. Opt. Commun. 392, 185–189 (2017)

    ADS  Google Scholar 

  42. Yuan, J.B., Tang, S.Q., Wang, X.W., Zhang, D.Y.: One-step distillation of local-unitary-equivalent GHZ-type states. Quantum Inf. Process. 17, 259 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Horodecki, M., Horodecki, P., Horodecki, R.: Inseparable two spin-1/2 density matrices can be distilled to a singlet form. Phys. Rev. Lett. 78, 574–577 (1997)

    ADS  MATH  Google Scholar 

  44. Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001)

    ADS  Google Scholar 

  45. Wang, X.W., Yu, S.X., Zhang, D.Y., Oh, C.H.: Effect of weak measurement on entanglement distribution over noisy channels. Sci. Rep. 6, 22408 (2016)

    ADS  Google Scholar 

  46. Filippov, S.N., Frizen, V.V., Kolobova, D.V.: Ultimate entanglement robustness of two-qubit states against general local noises. Phys. Rev. A 97, 012322 (2018)

    ADS  Google Scholar 

  47. Ali, M., Gühne, O.: Robustness of multiparticle entanglement: specific entanglement classes and random states. J. Phys. B: At. Mol. Opt. Phys. 47, 055503 (2014)

    ADS  Google Scholar 

  48. Arthur, T.T., Martin, T., Fai, L.C.: Disentanglement and quantum states transitions dynamics in spin-qutrit systems: dephasing random telegraph noise and the relevance of the initial state. Quantum Inf. Process. 17, 37 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Aolita, L., Cavalcanti, D., Chaves, R., et al.: Noisy evolution of graph-state entanglement Phys. Rev. A 82, 032317 (2010)

    Google Scholar 

  50. Shen, L.T., Shi, Z.C., Wu, H.Z., Yang, Z.B.: Dynamics of entanglement in Jaynes–Cummings nodes with nonidentical qubit-field coupling strengths. Entropy 19, 331 (2017)

    ADS  Google Scholar 

  51. Fröwis, F., Dür, W.: Stability of encoded macroscopic quantum superpositions. Phys. Rev. A 85, 052329 (2012)

    ADS  Google Scholar 

  52. Chaves, R., Aolita, L., Acín, A.: Robust multipartite quantum correlations without complex encodings. Phys. Rev. A 86, 020301(R) (2012)

    ADS  Google Scholar 

  53. Borras, A., Majtey, A.P., Plastino, A.R.: Robustness of highly entangled multiqubit states under decoherence. Phys. Rev. A 79, 022108 (2009)

    ADS  Google Scholar 

  54. Wang, X.W., Tang, S.Q., Liu, Y., Yuan, J.B.: Improving the robustness of entangled states by basis transformation. Entropy 21, 59 (2019)

    ADS  Google Scholar 

  55. Konrad, T., De Melo, F., Tiersch, M., et al.: Evolution equation for quantum entanglement. Nat. Phys. 4, 99–102 (2008)

    Google Scholar 

  56. Salles, A., de Melo, F., Almeida, M.P., et al.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

    ADS  Google Scholar 

  57. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)

    MathSciNet  MATH  Google Scholar 

  58. Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    ADS  Google Scholar 

  59. Xu, J.S., Li, C.F., Xu, X.Y., et al.: Experimental characterization of entanglement dynamics in noisy channels. Phys. Rev. Lett. 103, 240502 (2009)

    ADS  Google Scholar 

  60. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    ADS  MathSciNet  Google Scholar 

  61. Li, J.G., Zou, J., Shao, B.: Entanglement evolution of two qubits under noisy environments. Phys. Rev. A 82, 042318 (2010)

    ADS  Google Scholar 

  62. Tolkunov, D., Privman, V., Aravind, P.K.: Decoherence of a measure of entanglement. Phys. Rev. A 71, 060308 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Yöna, M., Yu, T., Eberly, J.H.: Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B: At. Mol. Opt. Phys. 39, 621 (2006)

    ADS  Google Scholar 

  64. Ikram, M., Li, F.L., Zubairy, M.S.: Disentanglement in a two-qubit system subjected to dissipation environments. Phys. Rev. A 75, 062336 (2007)

    ADS  Google Scholar 

  65. Gong, Y.X., Zhang, Y.S., Dong, Y.L., et al.: Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons. Phys. Rev. A 78, 042103 (2008)

    ADS  Google Scholar 

  66. Al-Qasimi, A., James, D.F.V.: Sudden death of entanglement at finite temperature. Phys. Rev. A 77, 012117 (2008)

    ADS  Google Scholar 

  67. Kesting, F., Fröwis, F., Dür, W.: Effective noise channels for encoded quantum systems. Phys. Rev. A 88, 042305 (2013)

    ADS  Google Scholar 

  68. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  69. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883–892 (1998)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hunan Provincial Natural Science Foundation (Grant Nos. 2020JJ4002, 2020JJ4146, 2019JJ50007), the NSFC (Grant No. 11947081), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 19A069), and the Innovation and Entrepreneurship Training Program for College Students in Hunan Province “Study on the methods for enhancing the robustness of entangled states in quantum information technology.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Wen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HM., Wang, XW., Tang, SQ. et al. Optimal qubit-bases for preserving two-qubit entanglement against Pauli noises. Quantum Inf Process 19, 377 (2020). https://doi.org/10.1007/s11128-020-02889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02889-x

Keywords

Navigation