Skip to main content
Log in

Qubits’ mapping and routing for NISQ on variability of quantum gates

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Rapid development has taken place in quantum algorithms, but few of them can be implemented directly on the quantum computer because of the coupling constraint and high error rates of quantum computer operations. Transforming a circuit into an executable one on the quantum computer with the highest fidelity is an NP problem. Therefore, the algorithm tackling the mapping and routing problem of qubits is needed. Following the policy of VQA, a heuristic algorithm to solve the problem is proposed. The algorithm uses the error score derived from quantum operation’s error rate as the heuristic cost. Combining SWAP gates, physical CNOT gates, remote CNOT gates and inverse CNOT gates, the algorithm transforms the input circuit into an executable output circuit on the quantum computer with lower error score in acceptable execution time and moves forward from local optimal to global optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys 2(1(6/7)), 467 (1982). https://doi.org/10.1007/BF02650179

    Article  MathSciNet  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Washington, DC, USA, 1994), SFCS ’94 pp. 124–134. https://doi.org/10.1109/SFCS.1994.365700

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing (ACM, New York, NY, USA, 1996), STOC ’96, pp. 212–219. https://doi.org/10.1145/237814.237866

  5. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  6. IBM Q team. 5-qubit backend: Ibm q 5 yorktown backend specification v2.0.0, (2018). https://quantum-computing.ibm.com/

  7. IBM Q team. 5-qubit backend: Ibm q ourense backend specification v1.0.1 (2019). https://quantum-computing.ibm.com/

  8. IBM Q team. 14-qubit backend: Ibm q 16 melbourne backend specification v1.0.0 (2019). https://quantum-computing.ibm.com/

  9. IBM Q team. 5-qubit backend: Ibm q vigo backend specification v1.0.1 (2019). https://quantum-computing.ibm.com/

  10. Ash-Saki, A., Alam, M., Ghosh, S.: QURE: qubit re-allocation in noisy intermediate-scale quantum computers. In: Proceedings of the 56th Annual Design Automation Conference 2019 (ACM, New York, NY, USA, 2019), DAC ’19, pp. 141:1–141:6. https://doi.org/10.1145/3316781.3317888

  11. Li, G., Ding, Y., Xie, Y.: Tackling the qubit mapping problem for NISQ-Era quantum devices. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ACM, New York, NY, USA, 2019), ASPLOS ’19, pp. 1001–1014. https://doi.org/10.1145/3297858.3304023

  12. Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 5(2), 3457 (1995). https://doi.org/10.1103/PhysRevA.52.3457

    Article  ADS  Google Scholar 

  13. Nishio, S., Pan, Y., Satoh, T., Amano, H., Meter, R.V.: Extracting success from ibm’s 20-qubit machines using error-aware compilation (2019)

  14. Zulehner, A., Paler, A., Wille, R.: An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 38(7), 1226 (2019). https://doi.org/10.1109/TCAD.2018.2846658

    Article  Google Scholar 

  15. Wille, R., Burgholzer, L., Zulehner, A.: Mapping quantum circuits to IBM QX architectures using the minimal number of SWAP and H operations In: Proceedings of the 56th Annual Design Automation Conference 2019 (ACM, New York, NY, USA, 2019), DAC ’19, pp. 142:1–142:6. https://doi.org/10.1145/3316781.3317859

  16. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: a case for variability-aware policies for NISQ-Era quantum computers In: (ACM, New York, NY, USA, 2019), ASPLOS ’19, pp. 987–999.https://doi.org/10.1145/3297858.3304007

  17. IBM Q Experience - 2.0.0 (2019). https://quantum-computing.ibm.com/

  18. Arute, F., Arya, K., Babbush, R., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505 (2019). https://doi.org/10.1038/s41586-019-1666-5

    Article  ADS  Google Scholar 

  19. Abraham, H., Akhalwaya, I.Y., et. al.: Qiskit: An open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2562110

  20. Bellman, R.: On a routing problem. Quart. Appl. Math 16, 87 (1958). https://doi.org/10.1090/qam/102435

    Article  MathSciNet  MATH  Google Scholar 

  21. L.R. Ford, Network Flow Theory. No. P-923 in Papers (RAND Corporation, Santa Monica, CA, 1956)

  22. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390

    Article  MathSciNet  MATH  Google Scholar 

  23. Cowtan, A., Dilkes, S., Duncan, R. et al., On the qubit routing problem In: 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019), Leibniz International Proceedings in Informatics (LIPIcs), vol. 135, ed. by W. van Dam, L. Mancinska (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2019), Leibniz International Proceedings in Informatics (LIPIcs), vol. 135, pp. 5:1–5:32. 10.4230/LIPIcs.TQC.2019.5. http://drops.dagstuhl.de/opus/volltexte/2019/10397

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61871111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Tao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZT., Meng, FX., Zhang, ZC. et al. Qubits’ mapping and routing for NISQ on variability of quantum gates. Quantum Inf Process 19, 378 (2020). https://doi.org/10.1007/s11128-020-02873-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02873-5

Keywords

Navigation