Skip to main content
Log in

Mixing time of the Chung–Diaconis–Graham random process

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Define \((X_n)\) on \({\mathbf {Z}}/q{\mathbf {Z}}\) by \(X_{n+1} = 2X_n + b_n\), where the steps \(b_n\) are chosen independently at random from \(-1, 0, +1\). The mixing time of this random walk is known to be at most \(1.02 \log _2 q\) for almost all odd q (Chung, Diaconis, Graham in Ann Probab 15(3):1148–1165, 1987), and at least \(1.004 \log _2 q\) (Hildebrand in Proc Am Math Soc 137(4):1479–1487, 2009). We identify a constant \(c = 1.01136\dots \) such that the mixing time is \((c+o(1))\log _2 q\) for almost all odd q. In general, the mixing time of the Markov chain \(X_{n+1} = a X_n + b_n\) modulo q, where a is a fixed positive integer and the steps \(b_n\) are i.i.d. with some given distribution in \({\mathbf {Z}}\), is related to the entropy of a corresponding self-similar Cantor-like measure (such as a Bernoulli convolution). We estimate the mixing time up to a \(1+o(1)\) factor whenever the entropy exceeds \((\log a)/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities. Oxford University Press, Oxford (2013). A nonasymptotic theory of independence, With a foreword by Michel Ledoux

    Book  Google Scholar 

  2. Breuillard, E., Varjú, P.P.: Cut-off phenomenon for the ax+b Markov chain over a finite field (2019). Preprint arXiv:1909.09053v1

  3. Chung, F.R.K., Diaconis, P., Graham, R.L.: Random walks arising in random number generation. Ann. Probab. 15(3), 1148–1165 (1987)

    Article  MathSciNet  Google Scholar 

  4. Derriennic, Y.: Quelques Applications du théorème Ergodique Sous-Additif, Conference on Random Walks (Kleebach, 1979) (French), vol. 4, pp. 183–201 (1980)

  5. Friedlander, J., Iwaniec, H.: Opera de cribro, vol. 57. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  6. Ford, K.: Anatomy of integers and random permutations course lecture notes. https://faculty.math.illinois.edu/ford/Anatomy_lectnotes.pdf

  7. Green, B., Harper, A.J.: Inverse questions for the large sieve. Geom. Funct. Anal. 24(4), 1167–1203 (2014)

    Article  MathSciNet  Google Scholar 

  8. Hare, K.E., Hare, K.G., Morris, B.P.M., Shen, W.: The entropy of Cantor-like measures. Acta Math. Hungar. 159(2), 563–588 (2019)

    Article  MathSciNet  Google Scholar 

  9. Hildebrand, M.: A lower bound for the Chung–Diaconis–Graham random process. Proc. Am. Math. Soc. 137(4), 1479–1487 (2009)

    Article  MathSciNet  Google Scholar 

  10. Hildebrand, M.: On a lower bound for the Chung–Diaconis–Graham random process. Stat. Probab. Lett. 152, 121–125 (2019)

    Article  MathSciNet  Google Scholar 

  11. Hildebrand, M.V.: Rates of convergence of some random processes on finite groups, ProQuest LLC, Ann Arbor, MI (1990). Thesis (Ph.D.), Harvard University

  12. Hildebrand, M.: Random processes of the form \(X_{n+1} = a_{n} X_{n} + b_{n}\) (mod p). Ann. Probab. 21(2), 710–720 (1993)

    Article  MathSciNet  Google Scholar 

  13. Hall, R.R., Tenenbaum, G.: Divisors, Cambridge Tracts in Mathematics, vol. 90. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  14. Kaĭmanovich, V.A., Vershik, A.M.: Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3), 457–490 (1983)

    Article  MathSciNet  Google Scholar 

  15. Neville III, R.: On lower bounds of the Chung–Diaconis–Graham random process, ProQuest LLC, Ann Arbor, MI (2011). Thesis (Ph.D.), State University of New York at Albany

  16. Steele, J.M.: An Efron–Stein inequality for nonsymmetric statistics. Ann. Stat. 14(2), 753–758 (1986)

    Article  MathSciNet  Google Scholar 

  17. Tudesq, C.: Majoration de la loi locale de certaines fonctions additives. Arch. Math. (Basel) 67(6), 465–472 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Kevin Ford for discussions related to Lemma 5.4. We thank Martin Hildebrand and Max Wenqiang Xu for comments and suggestions on an earlier version of this paper. We are grateful to the anonymous referee for carefully reading the paper and for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter P. Varjú.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sean Eberhard and Péter P. Varjú have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 803711). PV was supported by the Royal Society.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eberhard, S., Varjú, P.P. Mixing time of the Chung–Diaconis–Graham random process. Probab. Theory Relat. Fields 179, 317–344 (2021). https://doi.org/10.1007/s00440-020-01009-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-020-01009-1

Mathematics Subject Classification

Navigation