Skip to main content

Advertisement

Log in

Mechanical, thermal and morphological properties of thermoplastic polyurethane composite reinforced by multi-walled carbon nanotube and titanium dioxide hybrid fillers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A suitable material for wind turbine blades has promoted great interest in carbon-based thermoplastic polyurethane (TPU) composites as they are flexible, lightweight, and mechanically robust. However, these carbon-based fillers deteriorate the thermal and mechanical properties in the long run due to the high agglomeration of the nanoparticles. In addition to that, these fillers also increase the production cost because of the chemical treatment conducted on the fillers. Therefore, a new approach is essential for maintaining the mechanical and thermal properties without using expensive chemical treatment in a low-cost platform. In this work, we present low agglomeration with even distribution of reinforcing fillers in the TPU matrix and robust mechanical and thermal properties by incorporating TiO2 in the carbon-based TPU matrix (TiO2/MWCNT/TPU), without inclusion of costly chemical treatments. TiO2 improves morphology due to the low valency of Ti2+, which may decrease the particle size and thus, reduces agglomeration. Moreover, the enhanced morphology assists in sustaining the rigidity of its molecular structure at high temperatures. The composite also reveals excellent mechanical properties of high tensile stress (4.46 MPa), more extended elongation at break (49%), and high Young's Modulus (9.17 MPa). The thermal analysis using DMA and TGA revealed that the sample TiO2/MWCNT/TPU is a good heat insulator and has a high glass transition temperature compared to the neat TPU indicating its ability to sustain rigidity at high temperatures overall, this composite can perform in elevated weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Seo Y, Huh C, Lee S, Chang D (2016) Comparison of CO2 liquefaction pressure for ship-based carbon capture storage (CCS) chain. Int J Greenh Gas Con 52:1–12. https://doi.org/10.1016/j.ijggc.2016.06.011

    Article  CAS  Google Scholar 

  2. Thomsen OT (2009) Sandwich materials for wind turbine blades-present and future. J Sandw Struct Mater 11:7–26. https://doi.org/10.1177/1099636208099710

    Article  Google Scholar 

  3. Loos MR, Yang J, Feke DL, Manas-Zloczower I (2012) Enhanced fatigue life of carbon nanotube-reinforced epoxy composites. Polym Eng Sci 52:1882–1887. https://doi.org/10.1002/pen.23145

    Article  CAS  Google Scholar 

  4. Liang F, Gou J, Kapat J, Gu H, Song G (2011) Multifunctional nanocomposite coating for wind turbine blades. Int J Smart Nano Mater 2:120–133. https://doi.org/10.1080/19475411.2011.592867

    Article  CAS  Google Scholar 

  5. Wan T, Chen D, Bai X (2016) Preparation and relative properties of dope-dyed polyurethane modified by b-cyclodextrin. Dyes Pigments 129:18–23. https://doi.org/10.1016/j.dyepig.2016.02.011

    Article  CAS  Google Scholar 

  6. Hsissou R, Berradi M, El Bouchti M, El Harfi A (2019) Morphological and rheological study of the epoxy polymer and their nanocomposite (NGTHTPTBAE/MDA/TSP) crosslinked by methylene dianiline and formulated by trisodium phosphate. J Turkish Chem Society Section A Chem. https://doi.org/10.18596/jotcsa.477191

    Article  Google Scholar 

  7. Maganty S, Roma M, Meschter S, Starkey D, Gomez M, Edwards D, Ekin A, Elsken K, Cho J (2016) Enhanced mechanical properties of polyurethane composite coatings through nanosilica addition. Prog Org Coat 90:243–251. https://doi.org/10.1016/j.porgcoat.2015.10.016

    Article  CAS  Google Scholar 

  8. Jiang S, Li Q, Zhao Y, Wang J, Kang M (2015) Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites. Compos Sci Technol 110:87–94. https://doi.org/10.1016/j.compscitech.2015.01.022

    Article  CAS  Google Scholar 

  9. Hsissou R, Elharfi A (2020) Rheological behavior of three polymers and their hybrid composites (TGEEBA/MDA/PN), (HGEMDA/MDA/PN) and (NGHPBAE/MDA/PN). J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2018.04.030

    Article  Google Scholar 

  10. Bekhta A, Hsissou R, Berradi M, El Bouchti M, Elharfi A (2019) Viscosimetric and rheological properties of epoxy resin TGEUBA and their composite (TGEUBA/MDA/TGEMDA+TSP). Results in Engineering 4:100058. https://doi.org/10.1016/j.rineng.2019.100058

    Article  Google Scholar 

  11. Hsissou R, El Bouchti M, Elharfi A (2017) Elaboration and viscosimetric, viscoelastic and rheological studies of a new hexafunctional polyepoxide polymer : hexaglycidyl ethylene of methylene dianiline. J Mater Environ Sci 8:4349–4361

    CAS  Google Scholar 

  12. Zhang Y, Liu Y, Wang X, Wang B, Zhang Y (2016) A novel surface modification of carbon fiber for high performance thermoplastic polyurethane composites. Appl Surf Sci 382:144–154. https://doi.org/10.1016/j.apsusc.2016.04.118

    Article  CAS  Google Scholar 

  13. Hsissou R, Bekhta A, Elharfi A (2017) Viscosimetric and rheological studies of a new trifunctional epoxy pre-polymer with noyan ethylene: triglycidyl ether of ethylene of bisphenol A (TGEEBA). J Mater Environ Sci 8:603–610

    CAS  Google Scholar 

  14. Sabzi M, Mirabedini S, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on properties of polyurethane composite coating. Prog Org Coat 65:222–228. https://doi.org/10.1016/j.porgcoat.2008.11.006

    Article  CAS  Google Scholar 

  15. Hsissou R, Berradi M, El Bouchti M, El Bachiri A, Elharfi A (2018) Synthesis characterization rheological and morphological study of a new epoxy resin pentaglycidyl ether pentaphenoxy of phosphorus and their composite (PGEPPP/MDA/PN). Polym Bull 76:4859–4878. https://doi.org/10.1007/s00289-018-2639-9

    Article  CAS  Google Scholar 

  16. Bekhta A, Hsissou R, Elharfi A (2020) Evaluation of mechanical compressive strength of cementitious matrix with 12% of IER formulated by modified polymer (NEPS) at different percentages. Sci Rep 10:2461. https://doi.org/10.1038/s41598-020-59482-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang G, Manjooran N (2014) Nano fabrication and its applications in renewable energy. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  18. Kim J, Dao T, Jeong H (2016) Aluminum hydroxide-CNT hybrid material for synergizing the thermal conductivity of alumina sphere/thermoplastic polyurethane composite with minimal increase of electrical conductivity. J Ind Eng Chem 33:150–155. https://doi.org/10.1016/j.jiec.2015.09.025

    Article  CAS  Google Scholar 

  19. Song P, Zhao L, Cao Z, Fang Z (2011) Polypropylene nanocomposites based on C60-decorated carbon nanotubes: thermal properties, flammability, and mechanical properties. J Mater Chem 21:7782–7788. https://doi.org/10.1039/C1JM10395D

    Article  CAS  Google Scholar 

  20. Memarian F, Fereidoon A, Ghorbanzadeh Ahangari M (2016) The shape memory, and the mechanical and thermal properties of TPU/ABS/CNT: a ternary polymer composite. RSC Adv 6:101038–101047. https://doi.org/10.1039/C6RA23087C

    Article  CAS  Google Scholar 

  21. Shokry SA, El Morsi AK, Sabaa MS, Mohamed RR, El Sorogy HE (2015) Synthesis and characterization of polyurethane based on hydroxyl terminated polybutadiene and reinforced by carbon nanotubes. Egyptian Journal of Petroleum 24:145–154. https://doi.org/10.1016/j.ejpe.2015.05.008

    Article  Google Scholar 

  22. Sulong AB, Gaaz TS, Sahari J (2015) Mechanical and physical properties of injection molded halloysite nanotubes-thermoplastic polyurethane nanocomposites. Procd Soc Behv 195:2748–2752. https://doi.org/10.1016/j.sbspro.2015.06.386

    Article  Google Scholar 

  23. Qu WQ, Xia YR, Jiang LJ, Zhang LW, Hou ZS (2016) Synthesis and characterization of a new biodegradable polyurethanes with good mechanical properties. Chinese Chem Lett 27:135–138. https://doi.org/10.1016/j.cclet.2015.07.018

    Article  CAS  Google Scholar 

  24. Palimi M, Rostami M, Mahdavian M, Ramezanzadeh B (2014) Surface modification of Cr2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS). part 1: studying the mechanical properties of polyurethane/Cr2O3 nanocomposites. Prog Org Coat 77:1663–1673. https://doi.org/10.1016/j.porgcoat.2014.05.010

    Article  CAS  Google Scholar 

  25. Dieter GE (1961) Mechanical metallurgy. Mc Graw-Hill Book Company, London

    Book  Google Scholar 

  26. Sun Y (2010) Mechanical properties of carbon nanotube/metal composites. Dissertation, University of Central Florida.

  27. Stoller RE, Zinkle SJ (2000) On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials. J Nucl Mater 283:349–352. https://doi.org/10.1016/S0022-3115(00)00378-0

    Article  Google Scholar 

  28. Xu Y, Sheng J, Yin X, Yu J, Ding B (2017) Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance. J Colloid Interf Sci 508:508–516. https://doi.org/10.1016/j.jcis.2017.08.055

    Article  CAS  Google Scholar 

  29. El-Shekeil YA, Sapuan SM, Khalina A, Zainudin ES, Al-Shuja' OM (2012) Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. Express Polym Lett 6:1032–1040. https://doi.org/10.3144/expresspolymlett.2012.108

    Article  CAS  Google Scholar 

  30. Barick AK, Tripathy DK (2010) Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Compos Part A-Appl S 41:1471–1482. https://doi.org/10.1016/j.compositesa.2010.06.009

    Article  CAS  Google Scholar 

  31. Chen ZK, Yang JP, Ni QQ, Fu SY, Huang YG (2009) Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer 50:4753–4759. https://doi.org/10.1016/j.polymer.2009.08.001

    Article  CAS  Google Scholar 

  32. Regonini D, Jaroenworaluck A, Bowen SR, C, (2010) Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf Interface Anal 42:139–144. https://doi.org/10.1002/sia.3183

    Article  CAS  Google Scholar 

  33. Russo P, Lavorgna M, Piscitelli F, Acierno D, Di Maio L (2013) Thermoplastic polyurethane films reinforced with carbon nanotubes: the effect of processing on the structure and mechanical properties. Eur Polym J 49:379–388. https://doi.org/10.1016/j.eurpolymj.2012.11.008

    Article  CAS  Google Scholar 

  34. Sichina W (2002) Characterization of polymers using TGA. Perkin Elmer, Waltham

    Google Scholar 

  35. Ahn HS, Sinha N, Zhang M, Banerjee D, Fang S, Baughman RH (2006) Pool boiling experiments on multiwalled carbon nanotube (MWCNT) forests. J Heat Transfer 128:1335–1342. https://doi.org/10.1115/1.2349511

    Article  CAS  Google Scholar 

  36. Moghim MH, Zebarjad SM (2017) Tensile properties and deformation mechanisms of PU/MWCNTs nanocomposites. Polym Bull 74:4267–4277. https://doi.org/10.1007/s00289-017-1955-9

    Article  CAS  Google Scholar 

  37. Mahalingam S, Abdullah H, Ashaari I, Shaari S, Muchtar A (2016) Influence of heat treatment process in In2O3-MWCNTs as photoanode in DSSCs. Ionics 22:711–719. https://doi.org/10.1007/s11581-015-1593-x

    Article  CAS  Google Scholar 

  38. Brostow W, Lobland HE, Khoja S (2015) Brittleness and toughness of polymers and other materials. Mater Lett 159:478–480. https://doi.org/10.1016/j.matlet.2015.07.047

    Article  CAS  Google Scholar 

  39. Sabet M, Soleimani H, Hosseini S (2016) Properties and characterization of ethylene-vinyl acetate filled with carbon nanotube. Polym Bull 73:419–434. https://doi.org/10.1007/s00289-015-1499-9

    Article  CAS  Google Scholar 

  40. Wang Y, Hao Y, Cheng H et al (1999) Photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode. J Mater Sci 34:2773–2779. https://doi.org/10.1023/A:1004658629133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Universiti Tenaga Nasional, Institute of Sustainable Energy of UNITEN and MOHE for the lab facilities and financial supports from the UNITEN BOLD grant (Grant number: 10436494/B/20191) and MOHE grant (Grant number: 20190111FRGS). Special thanks to those who contributed directly or indirectly to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abreeza Manap.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manap, A., Mahalingam, S., Vaithylingam, R. et al. Mechanical, thermal and morphological properties of thermoplastic polyurethane composite reinforced by multi-walled carbon nanotube and titanium dioxide hybrid fillers. Polym. Bull. 78, 5815–5832 (2021). https://doi.org/10.1007/s00289-020-03393-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03393-z

Keywords

Navigation