Skip to main content
Log in

Hydrogel sensors with pH sensitivity

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The pH-sensitive smart hydrogel sensor was studied. The hydrogel was prepared from polymerization reaction between the 2-hydroxyethyl methacrylate and diallyldimethyammonium chloride using potassium persulfate as an initiator, N, N′-methylenebisacrylamide as a cross-linker and N, N, N′, N′-tetramethylethylenediamine as an accelerator. Bromothymol blue was added to the polymerization system to produce the pH-sensitive hydrogel. The results showed that the hydrogel exhibited properties as a sensor capable of detecting acid–base solutions. The fluid sensing of the hydrogel showed sign of a change in color of the bromothymol blue in the gel. Factor affecting the properties of the hydrogel sensors such as the color change, recovery from bending, and swelling property was the concentration of the diallyldimethyammonium chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bahram M, Mohseni N, Mehdi M (2016) An introduction to hydrogels and some recent application. InTech, London, pp 13–18

    Google Scholar 

  2. Das S, Subuddhi U (2019) Guar gum–poly(N-isopropylacrylamide) smart hydrogels for sustained delivery of 5-fluorouracil. Polym Bull 76:2945–2963

    Article  CAS  Google Scholar 

  3. Huang Z, Zhang X, Zhang X, Wang S, Yang B, Wang K, Yuan J, Tao L, Wei Y (2017) Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. Polym Bull 74:4525–4536

    Article  CAS  Google Scholar 

  4. Hung CF, Chen CC, Yeh PC, Chen PW (2017) Chung TK (2017) A magnetic-piezoelectric smart material-structure sensing three axis DC and AC magnetic-fields. Appl Phys A 123:739

    Article  CAS  Google Scholar 

  5. Kim M, Shin YJ, Lee JY, Chu WS, Ahn SH (2017) Pulse width modulation as energy-saving strategy of shape memory alloy based smart soft composite actuator. Int J Eng Man 18:895–901

    Google Scholar 

  6. Monir TSB, Afroz S, Khan RA, Miah MY, Takafuji M, Alam MA (2019) pH-snsitive hydrogel from polyethylene oxide and acrylic acid by gamma radiation. J Comps Sci 3:58

    Article  CAS  Google Scholar 

  7. Gan L, Li H, Chen L, Xu L, Liu J, Geng A, Mei C, Shang S (2018) Graphene oxide incorporated alginate hydrogel beads for the removal of various organic dyes and bisphenol A in water. Colloid Polym Sci 296:607–615

    Article  CAS  Google Scholar 

  8. Beyranvand F, Gharzi A, Abbaszadeh A, Khorramabadi RM, Gholami M, Gharravi AM (2019) Encapsulation of Satureja khuzistanica extract in alginate hydrogel accelerate wound healing in adult male rats. Inflamm Regen 39:2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jia W, Wenjun G, Zhifang Z, Yanjun C, Xiaotin C, Hu W (2019) Infrared imaging of modified chitosan hydrogel film morphology study of polyvinyl alcohol adsorption. Multimed Tools Appl. https://doi.org/10.1007/s11042-019-7555-y

    Article  Google Scholar 

  10. Bhattacharya D, Tiwari R, Bhatia T, Purohit MP, Pal A, Jagdale P, Mudiam MKR, Chaudhari BP, Shukla Y, Ansari KM, Kumar A, Kumar P, Srivastava V, Gupta KC (2019) Accelerated and scarless wound repair by a multicomponent hydrogel through simultaneous activation of multiple pathways. Drug Deliv Transl Re 9:1143–1158

    Article  Google Scholar 

  11. Ahmadian Y, Bakravi A, Hashemi H, Namazi H (2019) Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent. Polym Bull 76:1967–1983

    Article  CAS  Google Scholar 

  12. Stanley N, Mahanty B (2019) Preparation and characterization of biogenic CaCO3reinforced polyvinyl alcohol–alginate hydrogel as controlled-release urea formulation. Polym Bull. https://doi.org/10.1007/s00289-019-02763-6

    Article  Google Scholar 

  13. Kaur K, Jindal R, Jindal D (2019) Synthesis, optimization and characterization of PVA-co-poly(methacrylic acid) green adsorbents and applications in environmental remediation. Polym Bull. https://doi.org/10.1007/s00289-019-02900-1

    Article  Google Scholar 

  14. Danilaev MP, Bogoslov EA, Polsky YE, Yanilkin LV, Vakhitov LR, Gumarov AI, Tagirov LR (2019) Internal stresses in plasma deposited polymer film coatings. Inorg Mater: Appl Res 10:556–559

    Article  Google Scholar 

  15. Basha SKS, Rao MC (2019) Erratum to: Spectroscopic and Discharge Studies on Graphene Oxide. Polym Sci, Ser A 61:226–229

    Article  Google Scholar 

  16. Gadim HGG, Doniavi A (2018) Improving structural properties of polymer fibers to design and construct fiber spinneret and optimize process parameters using response surface method and gage R&R. J Mech Sci Technol 32:1135–1142

    Article  Google Scholar 

  17. Liu B, Fu Z, Han Y, Zhang M, Zhang H (2017) Facile synthesis of large sized and monodispersed polymer particles using particle coagulation mechanism: an overview. Colloid Polym Sci 295:749–757

    Article  CAS  Google Scholar 

  18. Fattima N, Mohamood Al-Zahara T, Zainuddin N, Ahmad@Ayob M, Tan SW (2018) Preparation, optimization and swelling study of carboxymethyl sago starch (CMSS)-acid hydrogel. Chem Cent J 12:133

    Article  CAS  Google Scholar 

  19. Sun XF, Zeng Q, Wang H, Hao Y (2019) Preparation and swelling behavior of pH/temperature responsive semi-IPN hydrogel based on carboxymethyl. Cellulose 26:1909–1922

    Article  CAS  Google Scholar 

  20. Kumar H, Kumar A, Kumar S, Park JW (2019) Development of silver nanoparticles-loaded CMC hydrogel using bamboo as a raw material for special medical applications. Chem Pap 73:953–964

    Article  CAS  Google Scholar 

  21. Rossi SM, Murray TM, Cassidy J, Lee M, Kell HM (2019) A custom radiopaque thermoresponsive chemotherapy-loaded hydrogel for intratumoural injection: an in vitro and ex vivo. Cardiovasc Inter Rad 42:289–297

    Article  Google Scholar 

  22. Lu F, Tao A, Tao W, Zhuang X, Shen M (2018) Thickness changes in the corneal epithelium and Bowman’s layer after overnight wear of silicone hydrogel contact. BMC Ophthalmol 18:286

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yuksel E, Ozulken K, Uzel MM, Uzel AGT, Aydogan S (2019) Comparison of Samfilcon A and Lotrafilcon B silicone hydrogel bandage contact lenses in reducing postoperative pain and accelerating re-epithelialization after photorefractive keratectomy. Int Ophthalmol. https://doi.org/10.1007/s10792-019-01105-9

    Article  PubMed  Google Scholar 

  24. Ghobashy MM, Kh El-Damhougy B, Nady N, El-Wahab HA, Naser AM, Abdelhai F (2018) Radiation crosslinking of modifying super absorbent (polyacrylamide/gelatin) hydrogel as fertilizers carrier and soil conditioner. J Polym Environ 26:3981–3994

    Article  CAS  Google Scholar 

  25. Estrada-Villegas GM, Morselli G, Oliveira MJA, Gonzalez-Perez G, Lugใo AB (2019) PVGA/Alginate-AgNPs hydrogel as absorbent biomaterial and its soil biodegradation behavior. Polym Bull. https://doi.org/10.1007/s00289-019-02966-x

    Article  Google Scholar 

  26. Wachal K, Stachowska E, Korpuścińska K, Nowak B, Krasiński Z (2018) Physical properties of hydrogel wound dressing and its use in low-level laser therapy (LLLT). Laser Med Sci 33:1317–1325

    Article  CAS  Google Scholar 

  27. Dadashzadeh A, Imani R, Moghassemi S, Omidfar K, Abolfathi N (2019) Study of hybrid alginate/gelatin hydrogel-incorporated niosomal Aloe vera capable of sustained release of Aloe vera as potential skin wound dressing. Polym Bull. https://doi.org/10.1007/s00289-019-02753-8

    Article  Google Scholar 

  28. Mohamad N, Loh EYX, Fauzi MB, Ng MH, Amin MCIM (2019) In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Deliv and Transl Re 9:444–452

    Article  CAS  Google Scholar 

  29. Zhao W, Shi Z, Hu S, Yang G, Tian H (2018) Understanding piezoelectric characteristics of PHEMA-based hydrogel nanocomposites as soft self-powered electronics. Adv Compos Hybrid Mater. 1:320–331

    Article  CAS  Google Scholar 

  30. Han Q, Chen Y, Song W, Zhang M, Wang S, Ren P, Hao L (2019) Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor. Bio-Design and Manufact. https://doi.org/10.1007/s42242-019-00051-w

    Article  Google Scholar 

  31. An R, Zhang B, Han L, Wang X, Zhang Y, Shi L, Ran R (2019) Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor. J Mater Sci 54:8515–8530

    Article  CAS  Google Scholar 

  32. Wei P, Song R, Chen C, Li Z, Zhu Z, Li S (2019) A pH-responsive molecularly imprinted hydrogel for dexamethasone release. J Inorg Organomet Polym Mater 29:659–666

    Article  CAS  Google Scholar 

  33. Zinatloo-Ajabshir S, Morassaei MS, Amiri O, Salavati-Niasari M (2020) Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram Int 46:6095–6107

    Article  CAS  Google Scholar 

  34. Zinatloo-Ajabshir S, Morassaei MS, Salavati-Niasari M (2018) Nd2Sn2O7 nanostructures as highly efficient visible light photocatalyst: green synthesis using pomegranate juice and characterization. J Clean Prod 198:11–18

    Article  CAS  Google Scholar 

  35. Zinatloo-Ajabshir S, Baladi M, Amiri O, Salavati-Niasari M (2020) Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Sep Purif Technol 248:117062

    Article  CAS  Google Scholar 

  36. Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M (2017) Schiff-base hydrothermal synthesis and characterization of Nd2O3 nanostructures for effective photocatalytic degradation of eriochrome black T dye as water contaminant. J Mater Sci: Mater Electron 28:17849–17859

    CAS  Google Scholar 

  37. Moshtaghi S, Zinatloo-Ajabshir S, Salavati-Niasari M (2016) Preparation and characterization of BaSnO3 nanostructures via a new simple surfactant-free route. J Mater Sci: Mater Electron 27:425–435

    CAS  Google Scholar 

  38. Mortazavi-Derazkola S, Zinatloo-Ajabshir S, Salavati-Niasari M (2017) Facile hydrothermal and novel preparation of nanostructured Ho2O3for photodegradation of eriochrome black T dye as water pollutant. Adv Powder Technol 28:747–754

    Article  CAS  Google Scholar 

  39. Zinatloo-Ajabshir S, Salehi Z, Salavati-Niasari M (2018) Green synthesis of Dy2Ce2O7 ceramic nanostructures using juice of Punica granatum and their efficient application as photocatalytic degradation of organic contaminants under visible light Ceram. Ceram. Int 44:3873–3883

    Article  CAS  Google Scholar 

  40. Zinatloo-Ajabshir S, Salehi Z, Amiri O, Salavati-Niasari M (2019) Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with figextract. Int J Hydrog Energy 44:20110–20120

    Article  CAS  Google Scholar 

  41. Zinatloo-Ajabshir S, Morassaei MS, Amiri O, Salavati-Niasari M, Foong LK (2020) Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram Int 46:17186–17196

    Article  CAS  Google Scholar 

  42. Zinatloo-Ajabshir S, Ghasemian N, Salavati-Niasari M (2020) Green synthesis of Ln2Zr2O7 (Ln = Nd, Pr) ceramic nanostructures using extract of green tea via a facile route and their efficient application on propane-selective catalytic reduction of NOx process. Ceram Int 46:66–73

    Article  CAS  Google Scholar 

  43. Nahhal IME, Zourab SM, Kodeh FS, Qudaih AI (2012) Thin film optical BTB pH sensors using sol–gel method in presence of surfactants. Int Nano Lett 2(16):1–9

    Google Scholar 

  44. Cao L, Liang T, Zhang X, Liu W, Jian Li, Zhan X, Wang L (2018) In-Situ pH-sensitive fibers via the anchoring of bromothymol blue on cellulose grafted with hydroxypropyltriethylamine groups via adsorption. Polym 10(709):1–13. https://doi.org/10.3390/polym10070709

    Article  CAS  Google Scholar 

  45. Gonçalves D (2016) Preparation and characterization of cellulose paper/polypyrrole/bromophenol blue composites for disposable optical sensors. Open Chem 14:404–411

    Article  Google Scholar 

  46. Liu L, Li X, Nagao M, Elias AL, Narain R, Chung H (2017) A pH-indicating colorimetric tough hydrogel patch towards applications in a substrate for smart wound dressings. Polym 9(558):1–1. https://doi.org/10.3390/polym9110558

    Article  CAS  Google Scholar 

  47. Zavakhina MS, Yushina IV, Samsonenko DG, Dybtsev DN, Fedin VP, Argent SP, Blake AJ, Schröder M (2017) Halochromic coordination polymers based on a triarylmethane dye for reversible detection of acids. Dalton Trans 46:465–470

    Article  CAS  PubMed  Google Scholar 

  48. Broadbent AD (2001) Basic principles of textile coloration. Society of Dyers and Colourists, Bradford

    Google Scholar 

  49. Abdollahi Z, Gomes VG (2006) Synthesis and characterization of polyacrtlamide with controlled molar weight. Dissertation, University of Sydney

  50. Huang C, Li Y, Duan L, Wang L, Ren X, Gaoa G (2017) Enhancing the self-recovery and mechanical property of hydrogels by macromolecular microspheres with thermal and redox initiation systems. RSC Adv 7:16015–16021

    Article  CAS  Google Scholar 

  51. Masuda T, Maruyama H, Arai F, Anada T, Fukuda T, Suzuki O (2020) Development of a pH indicator immobilized-gel-sheet for microenviroment analysis. IEEE 17:362–367

    Google Scholar 

  52. Kim SJ, Yoon SG, Kim SI (2004) Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly (diallydimethylammonium chloride). J Appl Polym Sci 91:3705–3709

    Article  CAS  Google Scholar 

  53. Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJ (2008) Review on hydrogel-based ph sensors and microsensors. Sensors 8:561–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferreira L, Vidal MM, Gil MH (2000) Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. Int J Pharm 194:169–180

    Article  CAS  PubMed  Google Scholar 

  55. Erfkamp J, Guenther M, Gerlach G (2019) Hydrogel-based sensors for ethanol detection in alcoholic beverages. Sensors 19:1199

    Article  CAS  PubMed Central  Google Scholar 

  56. Brawn RD (1982) Introduction to chemical analysis. McGraw-Hill, New York

    Google Scholar 

  57. Montheard JP, Chatzopoulos M (1992) 2-Hydroxyethyl methacrylate (hema): chemical properties and applications inbiomedicai fields. J Macromol Sci Polymer Rev 32:1–34

    Article  Google Scholar 

  58. Chen J, Liu M, Liu H, Ma L, Gao C, Zhu S, Zhang S (2010) Synthesis and properties of thermo-and pH-sensitive poly (diallyldimethylammonium chloride)/poly(N, N- diethylacrylamide) semi-IPN hydrogel. Chem Eng J 159:247–256

    Article  CAS  Google Scholar 

  59. Achilias DS, Siafaka PI (2017) Polymerization kinetics of poly(2-hydroxyethyl methacrylate) hydrogels and nanocomposite materials. Processes 5(21):1–19. https://doi.org/10.3390/pr5020021

    Article  CAS  Google Scholar 

  60. Collaresa FM, Ogliarib FA, Zanchib CH, Petzhold CI, Pivad E, Samuele SMW (2011) Influence of 2-hydroxyethyl methacrylate concentration on polymer network of adhesive resin. J Adhes Dent 2:1–5

    Google Scholar 

  61. Belma IŞIK (2000) Swelling behavior of acrylamide hydroxyethyl methacrylate hydrogels. Turk J Chem 24:147–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boonsri Kusuktham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rungsima, C., Boonyan, N., Klorvan, M. et al. Hydrogel sensors with pH sensitivity. Polym. Bull. 78, 5769–5787 (2021). https://doi.org/10.1007/s00289-020-03398-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03398-8

Keywords

Navigation