Skip to main content
Log in

Theoretical Analysis of the Decomposition Pathways and Species of Environmentally Friendly Insulation Gas C6F12O Based on the DFT and TST

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

C6F12O (1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)pentan-3-one) is one of the most potential alternative insulation medium to SF6 due to its excellent electrical strength and environmental effect. Although several works on the insulation and decomposition properties of C6F12O have been carried out in recent years, the detailed decomposition pathways and mechanism of C6F12O haven’t been revealed up to now. A comprehensive analysis of the decomposition mechanism of C6F12O is performed through high-level quantum chemistry calculations with DFT and TST in this paper. The results show that more than ten decomposition products are formed. C4F10(a), C5F12(b), and CO can be used for evaluating slight failures. C3F8, C2F6, C2F4, C3F6, C4F10(b), C5F12(a), C6F14(a) and C6F14(b) etc. can be taken as typical products when a general failure is caused in the equipment. CF4 can be used as a basis for determining whether a serious failure has occurred in the gas-insulated electrical equipment. According to the analysis, primary decomposition products such as C4F10(a) and C5F12(b) have relatively high dielectric strength. Besides, the concentration of decomposition products of C6F12O is low to have a major impact on the overall electrical performance at normal conditions. However, the insulation properties of C6F12O gas mixtures after the prolonged operation or multiple arc extinctions deserve further investigation. In the view of human safety and environmental effect, several toxic products such as C2F4, CO, and C3F6 should be effectively managed and handled with care. This paper could provide a theoretical basis for related engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhong L, Yang A, Wang X et al (2014) Dielectric breakdown properties of hot SF6–CO2 mixtures at temperatures of 300–3500 K and pressures of 0.01–1.0 Mpa. Phys Plasmas 21(5):3077–3859

    Article  Google Scholar 

  2. Dervos CT, Vassiliou P, Mergos JA (2007) Thermal stability of SF6 associated with metallic conductors incorporated in gas insulated switchgear power substations. J Phys D Appl Phys 40(22):6942–6949

    Article  CAS  Google Scholar 

  3. Fu Y, Wang X, Yang A et al (2019) The decomposition pathways of SF6 in the presence of organic insulator vapors. Plasma Chem Plasma Process 40(2):449–467

    Article  Google Scholar 

  4. Wan H, Moore J, Olthoff J et al (1993) Electron scattering and dissociative attachment by SF6 and its electrical-discharge by-products. Plasma Chem Plasma Process 13(1):1–16

    Article  CAS  Google Scholar 

  5. Fu Y, Yang A, Wang X et al (2019) Theoretical study of the decomposition mechanism of C4F7N. J Phys D Appl Phys 52:245203

    Article  CAS  Google Scholar 

  6. Zhong L, Wang J, Wang X, Rong M (2018) Calculation of electron-impact ionization cross sections of perfluoroketone (PFK) molecules CxF2xO (x=1 − 5) based on Binary-Encounter-Bethe (BEB) and Deutsch-Märk (DM) methods. Plasma Sources Sci Technol 27(9):095005

    Article  Google Scholar 

  7. Li Y, Zhang X, Zhang J, Xiao S, Xie B, Chen D, Gao Y, Tang J (2019) Assessment on the toxicity and application risk of C4F7N: a new SF6 alternative gas. J Hazard Mater 368:653–660

    Article  CAS  Google Scholar 

  8. Tatarinov A, Bilera I, Avtaeva S et al (2015) Dielectric barrier discharge processing of trans-CF3CH=CHF and CF3C(O)CF(CF3)2, their mixtures with air, N2, CO2 and analysis of their decomposition products. Plasma Chem Plasma Process 35(5):845–862

    Article  CAS  Google Scholar 

  9. Zhang X, Li Y, Tian S, Xiao S, Chen D, Tang J, Zhuo R (2017) Decomposition mechanism of the C5-PFK/CO2 gas mixture as an alternative gas for SF6. Chem Eng J 336:36–48

    Google Scholar 

  10. Xu W, Jiang Y, Ren X (2016) Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant. J Fire Sci 34(4):289–304

    Article  CAS  Google Scholar 

  11. Mantilla JD, Gariboldi N, Grob S (2014) Investigation of the insulation performance of a new gas mixture with extremely low GWP[C]. IEEE Electr Insul Conf 2014:469–473

    Google Scholar 

  12. Sauers I (1988) By-product formation in spark breakdown of SF6/O2 mixtures. Plasma Chem Plasma Process 8(2):247–262

    Article  CAS  Google Scholar 

  13. Zeng F, Zhang M, Yang D, Tang J (2018) Hybrid numerical simulation of decomposition of SF6 under negative DC partial discharge process. Plasma Chem Plasma Process 39:205–226

    Article  Google Scholar 

  14. Zhang X, Tian S, Xiao S, Deng Z, Li Y, Tang J (2017) Insulation strength and decomposition characteristics of a C6F12O and N2 gas mixture. Energies 10(8):1170

    Article  Google Scholar 

  15. Zhong L, Ji S, Wang F, Sun Q, Chen S, Liu J (2019) Theoretical study of the chemical decomposition mechanism and model of sulfur hexafluoride (SF6) under corona discharge. J Fluor Chem 220:61–68

    Article  CAS  Google Scholar 

  16. Fu Y, Yang A, Wang X, Murphy A, Li X, Liu D (2016) Theoretical study of the neutral decomposition of SF6 in the presence of H2O and O2 in discharges in power equipment. J Phys D Appl Phys 49(38):385203

    Article  Google Scholar 

  17. Zhong L, Xu J, Wang X et al (2019) Electron-impact ionization cross sections of new SF6 replacements: a method of combining Binary-Encounter-Bethe (BEB) and Deutsch-Märk (DM) formalism[J]. J Appl Phys 126(19):193302

    Article  Google Scholar 

  18. Zhong L, Wang J, Xu J, Wang X, Rong M (2019) Effects of buffer gases on plasma properties and Arc decaying characteristics of C4F7N–N2 and C4F7N–CO2 Arc Plasmas. Plasma Chem Plasma Process 39(6):1379–1396

    Article  CAS  Google Scholar 

  19. Zhang X, Li Y, Xiao S (2017) Theoretical study of the decomposition mechanism of environmentally friendly insulating medium c3f7cn in the presence of H2O in a discharge. J Phys D Appl Phys 50(32):325201

    Article  Google Scholar 

  20. Zhong L, Rong M, Wang X, Wu J, Han G, Wu Y (2017) Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential. AIP Adv 7(7):053506–54473

    Google Scholar 

  21. Fu Y, Wang X, Li X (2016) Theoretical study of the decomposition pathways and products of C5-perfluorinated ketone (C5 PFK). AIP Adv 6(8):085305

    Article  Google Scholar 

  22. Waterland R, Dobbs K (2007) Atmospheric Chemistry of Linear Perfluorinated Aldehydes: Dissociation Kinetics of CnF2n+1 CO Radicals. J Phys Chem A 111(13):2555–2562

    Article  CAS  Google Scholar 

  23. Wang F, Dun Q, Chen S, Zhong L, Fan X, Li L (2019) Calculations of total electron impact ionization cross sections for fluoroketone and fluoronitrile. IEEE Trans Dielectr Electr Insul 26(5):1693–1700

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlege HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador PA, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford

  25. Grubbs G II, Dewberry C, Cooke S, Lin W (2010) The shape of perfluorobutyryl fluoride, C3F7COF, in the gas phase. J Mol Struct 973(1–3):190–193

    Article  CAS  Google Scholar 

  26. Luo Z, Han F, Tang B, Zhang L, Liu C, Liang Q, Zhu L, Zhang J (2018) Optical properties and decomposition mechanisms of SF6 at different partial discharge determined by infrared spectroscopy. AIP Adv 8(6):065107

    Article  Google Scholar 

  27. Zhong L, Wang F, Chen S et al (2019) Influence mechanism of pressure on SF6 decomposition characteristics under AC corona discharge. IEEE Trans Dielectr Electr Insul 26(6):1989–1997

    Article  CAS  Google Scholar 

  28. Fu Y, Rong M, Wang X, Yang A (2018) Rate constants of C5F10O decomposition reactions at temperatures of 300–3500 K. J Phys D Appl Phys 52(3):035202

    Article  Google Scholar 

  29. Li Y, Zhang X, Tian S, Xiao S et al (2019) Insight into the decomposition mechanism of C6F12O–CO2 gas mixture. Chem Eng J 360(15):929–940

    Article  CAS  Google Scholar 

  30. Zhang X, Li Y, Xiao S, Tian S, Deng Z, Tang J (2017) Theoretical study of the decomposition mechanism of environmentally friendly insulating medium C3F7CN in the presence of H2O in a discharge. J Phys D Appl Phys 50(32):325201

    Article  Google Scholar 

  31. The NIST chemistry webbook https://www.nist.gov/programs-projects/nist-chemistry-webbook

  32. Zhang X, Li Y, Xiao S, Tang J, Deng Z (2017) Decomposition mechanism of C5F10O: an environmentally friendly insulation medium. Environ Sci Technol 51(17):10127–10136

    Article  CAS  Google Scholar 

  33. Wada J, Ueta G, Okabe S, Hikita M (2016) Dielectric properties of gas mixtures with per-fluorocarbon gas and gas with low liquefaction temperature. IEEE Trans Dielectr Electr Insul 23(2):838–847

    Article  CAS  Google Scholar 

  34. Devins J (1980) Replacement gases for SF6. IEEE Trans Dielectr Electr Insul 15(2):81–86

    Article  Google Scholar 

  35. Yu X, Hou H, Wang B (2017) Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6. J Comput Chem 38(10):721–729

    Article  CAS  Google Scholar 

  36. Brand K (1982) Dielectric strength, boiling point and toxicity of gases-different aspects of the same basic molecular properties[J]. IEEE Trans Dielectr Electr Insul 17(5):451–456

    Article  Google Scholar 

  37. Shanghai institute of organic chemistry, Chinese Academy of Sciences. Chemistry Database [DB/OL]. https://www.organchem.csdb.cn/scdb/default.asp

  38. Everything G (1996) Intergovernmental panel on climate change. Environ Sci Pollut Res 3(1):52–57

    Article  Google Scholar 

  39. Rozum I, Limão-Vieira P, Eden S, Tennyson J, Mason N (2006) Electron Interaction Cross Sections for CF3I, C2F4, and CFx(x = 1 – 3) Radicals. J Phys Chem Ref Data 35(1):267–284

    Article  CAS  Google Scholar 

  40. Christophorou L, Olthoff J, Green D (1997) Gases for electrical insulation and arc interruption: possible present and future alternatives to pure SF6. NIST Technical Note 1425

  41. Beroual A, Haddad A (2017) Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications. Energies 10(8):1216

    Article  Google Scholar 

  42. Ivy D, Rigby M, Baasandorj M, Burkholder J, Prinn R (2012) Global emission estimates and radiative impact of C4F10, C5F12, C6F14, C7F16 and C8F18. Atmos Chem Phys 12(5):12987–13014

    Article  Google Scholar 

  43. Mühle J, Ganesan A, Miller B, Salameh P, Harth C, Greally B, Rigby M, Porter L, Steele L, Trudinger C, Krummel P, O'Doherty S, Fraser P, Simmonds P, Prinn R, Weiss R (2010) Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmos Chem Phys 10:5145–5164

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51677061) and the science and technology project of China Southern Power Grid (No. GDKJXM20170043). We sincerely appreciate the National Supercomputing Center of Changsha for providing us with computational time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipeng Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Liu, J., Zhong, L. et al. Theoretical Analysis of the Decomposition Pathways and Species of Environmentally Friendly Insulation Gas C6F12O Based on the DFT and TST. Plasma Chem Plasma Process 41, 133–153 (2021). https://doi.org/10.1007/s11090-020-10129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10129-4

Keywords

Navigation