Skip to main content

Advertisement

Log in

Structural changes of vegetation and its association with microclimate in a successional gradient of low thorn forest in northeastern Mexico

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Understanding how microclimate and vegetation are associated during secondary succession is of primary importance for plant conservation in the face of the increasing land cover modification. However, these patterns are still unstudied for many plant communities. This study aimed to evaluate the structure (species richness, Shannon's diversity index, Simpson´s dominance index, abundance of each species, average height of species, species cover (%), species composition, and indicator values) of a low thorn forest fragment and to analyze its relation with microclimate along a successional gradient. Four stages of succession were delimited by the analysis of Landsat images, in the state of Tamaulipas, northeast Mexico. Statistical models incorporated species richness, diversity indices, abundance, height, and cover, as variables for searching differences between stages, or to evaluate microclimate associations. A total of 70 species, 54 genera, and 27 families were determined. Height of tree layer was the most important variable for discrimination of the successional stages. Conserved areas differed floristically from other stages, associated mainly with the lowest values of wind speed originated by tree layer characteristics. A significant association between species and microclimate was found, being wind speed and relative humidity the most important variables. Some species, due to their high importance values and their patterns of association with microclimate, may be considered as key taxa for low thorn forest, which is a threatened semitropical community in northeast Mexico. Conserved and late successional areas account for climatic regulation of this plant community, and the importance of these forest patches may be considered when establishing biodiversity protection areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi H (2010) Partial least squares regression and projection on latent structure regression (PLS Regression). WIREs Comput Stat 2:97–106. https://doi.org/10.1002/wics.51

    Article  Google Scholar 

  • Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014) Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci 111:740–745. https://doi.org/10.1073/pnas.1315179111

    Article  CAS  PubMed  Google Scholar 

  • Alanís-Rodríguez E, Jiménez-Pérez J, González-Tagle MA, Yerena-Yamallel JI, Cuellar-Rodríguez G, Mora-Olivo A (2013) Análisis de la vegetación secundaria del matorral espinoso tamaulipeco, México. Phyton Int J Exp Bot 82:185–191

    Google Scholar 

  • Almaguer-Sierra P (2005) Fisiografía del Estado de Tamaulipas. In: Barrientos-Lozano L, Correa-Sandoval A, Horta-Vega JV, García-Jiménez J (eds) Biodiversidad Tamaulipeca Vol. 1. Dirección General de Educación Superior Tecnológica, Instituto Tecnológico de Cd. Victoria, Victoria, , pp 2–20

  • Almazán-Núñez RC, Arizmendi MdC, Eguiarte LE, Corcuera P (2012) Changes in composition, diversity and structure of woody plants in successional stages of tropical dry forest in southwest Mexico. Rev Mex Biodivers 83:1096–1109. https://doi.org/10.7550/rmb.30403

    Article  Google Scholar 

  • Anderson GB, Bell ML, Peng RD (2013) Methods to calculate the heat index as an exposure metric in environmental health research. Environ Health Perspec 121:1111–1119. https://doi.org/10.1289/ehp.1206273

    Article  Google Scholar 

  • Arroyo-Rodríguez V et al (2017) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev 92:326–340. https://doi.org/10.1111/brv.12231

    Article  PubMed  Google Scholar 

  • Baker TP, Jordan GJ, Steel EA, Fountain-Jones NM, Wardlaw TJ, Baker SC (2014) Microclimate through space and time: microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. For Ecol Manage 334:174–184. https://doi.org/10.1016/j.foreco.2014.09.008

    Article  Google Scholar 

  • Bernhardt-Römermann M et al (2011) Functional traits and local environment predict vegetation responses to disturbance: a pan-European multi-site experiment. J Ecol 99:777–787. https://doi.org/10.1111/j.1365-2745.2011.01794.x

    Article  Google Scholar 

  • Bongers F, Poorter L, Hawthorne WD, Sheil D (2009) The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecol Lett 12:798–805. https://doi.org/10.1111/j.1461-0248.2009.01329.x

    Article  PubMed  Google Scholar 

  • Brower JE, Zar JH, Ende CNV (1998) Field and laboratory methods for general ecology. McGraw-Hill Education, Boston

    Google Scholar 

  • Camuffo D (2014) Microclimate for cultural heritage. Conservation, restoration, and maintenance of indoor and outdoor monuments. Elsevier, Waltham

  • Catford JA, Daehler CC, Murphy HT, Sheppard AW, Hardesty BD, Westcott DA, Rejmánek M, Bellingham PJ, Pergl J, Horvitz CC, Hulme PE (2012) The intermediate disturbance hypothesis and plant invasions: implications for species richness and management. Perspect Plant Ecol Evol Syst 14:231–241. https://doi.org/10.1016/j.ppees.2011.12.002

    Article  Google Scholar 

  • Chai Y, Yue M, Liu X, Guo Y, Wang M, Xu J, Zhang C, Chen Y, Zhang L, Zhang R (2016) Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process. Sci Rep 6:27087. https://doi.org/10.1038/srep27087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challenger A, Soberón J (2008) Los ecosistemas terrestres. In: CONABIO (ed) Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, pp 87–108

  • Chazdon RL, Letcher SG, Mv B, Martínez-Ramos M, Bongers F, Finegan B (2007) Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos Trans R Soc B: Biol Sci 362:273–289. https://doi.org/10.1098/rstb.2006.1990

    Article  Google Scholar 

  • Christensen NL (2014) An historical perspective on forest succession and its relevance to ecosystem restoration and conservation practice in North America. For Ecol Manage 330:312–322. https://doi.org/10.1016/j.foreco.2014.07.026

    Article  Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institute of Washington, Washington

    Book  Google Scholar 

  • Clench HK (1979) How to make regional lists of butterflies: Some thoughts. J Lepidopterists' Soc 33:216–231

    Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. The Am Nat 111:1119–1144

    Article  Google Scholar 

  • Craven D, Hall JS, Berlyn GP, Ashton MS, Mv B (2015) Changing gears during succession: shifting functional strategies in young tropical secondary forests. Oecologia 179:293–305. https://doi.org/10.1007/s00442-015-3339-x

    Article  PubMed  Google Scholar 

  • Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecol 81:2914–2927. https://doi.org/10.1890/0012-9658(2000)081[2914:nsicaa]2.0.co;2

    Article  Google Scholar 

  • Egler FE (1954) Vegetation science concepts I. Initial floristic composition, a factor in old-field vegetation development with 2 figs. Plant Ecol 4:412–417

    Article  Google Scholar 

  • Frey SJK, Hadley AS, Johnson SL, Schulze M, Jones JA, Betts MG (2016) Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci Adv 2:e1501392. https://doi.org/10.1126/sciadv.1501392

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Morales LJ, Estrada-Castillón AE, García-Jiménez J, Villarreal-Quintanilla JA, Cantú-Ayala C, Jurado-Ybarra E, Vargas-Vázquez VA (2014) Florística y vegetación del Área Natural Protegida Altas Cumbres, Tamaulipas, México. In: Correa-Sandoval A, Horta-Vega JV, García-Jiménez J, Barrientos-Lozano L (eds) Biodiversidad tamaulipeca Volumen 2, Número 1. Tecnológico Nacional de México. Instituto Tecnológico de Ciudad Victoria, Victoria, pp 15–73

    Google Scholar 

  • Gleason HA (1917) The structure and development of the plant association. Bull Torrey Bot Club 44:463–481

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206. https://doi.org/10.1016/s0378-1127(00)00535-1

    Article  Google Scholar 

  • Gutman G, Huang C, Chander G, Noojipady P, Masek JG (2013) Assessment of the NASA–USGS Global Land Survey (GLS) datasets. Remote Sens Environ 134:249–265. https://doi.org/10.1016/j.rse.2013.02.026

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hardwick SR, Toumi R, Pfeifer M, Turner EC, Nilus R, Ewers RM (2015) The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric For Meteorol 201:187–195. https://doi.org/10.1016/j.agrformet.2014.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilmers T et al (2018) Biodiversity along temperate forest succession. J Appl Ecol 55:2756–2766. https://doi.org/10.1111/1365-2664.13238

    Article  Google Scholar 

  • INEGI (2013) Conjunto de datos vectoriales de uso del suelo y vegetación escala 1:250,000, Serie V (Capa Unión). Instituto Nacional de Estadística y Geografía, Aguascalientes, México

    Google Scholar 

  • INEGI (2014) Conjunto de datos vectoriales edafológico, escala 1:250,000, Serie II (Continuo Nacional). Edición: 2. Instituto Nacional de Estadística y Geografía. Aguascalientes, México

  • Jiménez-Valverde A, Hortal J (2003) Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Rev Ibér Aracnol 8:151–161

    Google Scholar 

  • Johnson EA, Miyanishi K (2007) Disturbance and succession. In: Johnson EA, Miyanishi K (eds) Plant disturbance ecology: the process and the response. Elsevier Academic Press, New York, pp 1–14

    Google Scholar 

  • Johst K, Huth A (2005) Testing the intermediate disturbance hypothesis: when will there be two peaks of diversity? Diver Distrib 11:111–120

    Article  Google Scholar 

  • Jucker T et al (2018) Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob Chang Biol 24:5243–5258. https://doi.org/10.1111/gcb.14415

    Article  PubMed  Google Scholar 

  • Khaliq A, Javed M, Sohail M, Sagheer M (2014) Environmental effects on insects and their population dynamics. J Entomol Zool Stud 2:1–7

    Google Scholar 

  • Kolecka N (2018) Height of successional vegetation indicates moment of agricultural land abandonment. Remote Sens 10:1–13. https://doi.org/10.3390/rs10101568

    Article  Google Scholar 

  • Kovács B, Tinya F, Ódor P (2017) Stand structural drivers of microclimate in mature temperate mixed forests. Agric For Meteorol 234:11–21. https://doi.org/10.1016/j.agrformet.2016.11.268

    Article  Google Scholar 

  • Laflower DM, Hurteau MD, Koch GW, North MP, Hungate BA (2016) Climate-driven changes in forest succession and the influence of management on forest carbon dynamics in the Puget Lowlands of Washington State, USA. For Ecol Manage 362:194–204. https://doi.org/10.1016/j.foreco.2015.12.015

    Article  Google Scholar 

  • Lebrija-Trejos E, Pérez-García EA, Meave JA, Poorter L, Bongers F (2011) Environmental changes during secondary succession in a tropical dry forest in Mexico. J Trop Ecol 27:477–489. https://doi.org/10.1017/S0266467411000253

    Article  Google Scholar 

  • Lee D, Brenner T (2015) Perceived temperature in the course of climate change: an analysis of global heat index from 1979 to 2013. Earth Syst Sci Data 7:317–344. https://doi.org/10.5194/essd-7-193-2015

    Article  Google Scholar 

  • Leirana-Alcocer JL, Hernández-Betancourt S, Salinas-Peba L, Guerrero-González L (2009) Cambios en la estructura y composición de la vegetación relacionados con los años de abandono de tierras agropecuarias en la selva baja caducifolia espinosa de la Reserva de Dzilam, Yucatán. Polibotánica 27:53–70

    Google Scholar 

  • Letcher SG et al (2015) Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. J Ecol 103:1276–1290. https://doi.org/10.1111/1365-2745.12435

    Article  Google Scholar 

  • Lienard J, Florescu I, Strigul N (2015) An appraisal of the classic forest succession paradigm with the shade tolerance index. PLoS ONE 10:e0117138. https://doi.org/10.1371/journal.pone.0117138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longworth JB, Mesquita RC, Bentos TV, Moreira MP, Massoca PE, Williamson GB (2014) Shifts in dominance and species assemblages over two decades in alternative successions in Central Amazonia. Biotropica 46:529–537

    Article  Google Scholar 

  • Magnago LFS, Rocha MF, Meyer L, Martins SV, Meira-Neto JAA (2015) Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers Conserv 24:2305–2318. https://doi.org/10.1007/s10531-015-0961-1

    Article  Google Scholar 

  • Mahan JR, Upchurch DR (1988) Maintenance of constant leaf temperature by plants—I. Hypothesis—limited homeothermy. Environ Exp Bot 28:351–357

    Article  Google Scholar 

  • Melo FPL, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462–468. https://doi.org/10.1016/j.tree.2013.01.001

    Article  PubMed  Google Scholar 

  • Mendoza-Ponce A, Corona-Núñez RO, Galicia L, Kraxner F (2019) Identifying hotspots of land use cover change under socioeconomic and climate change scenarios in Mexico. Ambio 48:336–349. https://doi.org/10.1007/s13280-018-1085-0

    Article  PubMed  Google Scholar 

  • Miller AD, Roxburgh SH, Shea K (2011) How frequency and intensity shape diversity–disturbance relationships. Proc Natl Acad Sci USA 108:5643–5648. https://doi.org/10.1073/pnas.1018594108

    Article  PubMed  Google Scholar 

  • Mora-Olivo A, Alanís-Rodríguez E, Marroquín-Castillo JJ, Sarmiento-Muñoz TI, Martínez-Ávalos JG, Garza-Ocañas F, Torres-Castillo JA (2016) Structure and diversity of a submontane scrub community in Tamaulipas, Mexico. Interciencia 41:769–773

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York, USA

    Google Scholar 

  • Newman EA (2019) Disturbance ecology in the Anthropocene. Front Ecol Evol 7:1–6. https://doi.org/10.3389/fevo.2019.00147

    Article  Google Scholar 

  • Norden N et al (2015) Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proc Natl Acad Sci U. S A 112:8013–8018. https://doi.org/10.1073/pnas.1500403112

    Article  CAS  Google Scholar 

  • Norris C, Hobson P, Ibisch PL (2012) Microclimate and vegetation function as indicators of forest thermodynamic efficiency. J Appl Ecol 49:562–570. https://doi.org/10.1111/j.1365-2664.2011.02084.x

    Article  Google Scholar 

  • Osman N, Ali FH, Barakbah SS (2009) The role of pioneer vegetations in accelerating the process of natural succession. Am J Environ Sci 5:7–15. https://doi.org/10.3844/ajessp.2009.7.15

    Article  Google Scholar 

  • Parr CL (2012) Unpacking the impoverished nature of secondary forests. J Anim Ecol 81:937–939. https://doi.org/10.1111/j.1365-2656.2012.02016.x

    Article  PubMed  Google Scholar 

  • Pulsford SA, Lindenmayer DB, Driscoll DA (2016) A succession of theories: purging redundancy from disturbance theory. Biol Rev 91:148–167. https://doi.org/10.1111/brv.12163

    Article  PubMed  Google Scholar 

  • Purschke O, Michalski SG, Bruelheide H, Durka W (2017) Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales. Ecol Evol 7:11079–11091. https://doi.org/10.1002/ece3.3564

    Article  PubMed Central  Google Scholar 

  • Quesada M et al (2009) Succession and management of tropical dry forests in the Americas: review and new perspectives. For Ecol Manag 258:1014–1024. https://doi.org/10.1016/j.foreco.2009.06.023

    Article  Google Scholar 

  • Quesada M et al. (2014) Tropical dry forest ecological succession in Mexico: synthesis of a long-term study. In: Sánchez-Azofeifa A, Powers JS, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas. Ecology, conservation, and management. CRC Press, Boca Raton, pp 17–33

  • Renaud V, Innes JL, Dobbertin M, Rebetez M (2010) Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998–2007). Theor Appl Clim 105:119–127. https://doi.org/10.1007/s00704-010-0361-0

    Article  Google Scholar 

  • Sánchez-Reyes UJ, Niño-Maldonado S, Barrientos-Lozano L, Treviño-Carreón J (2017) Assessment of land use-cover changes and successional stages of vegetation in the Natural Protected Area Altas Cumbres, Northeastern Mexico, using Landsat satellite imagery. Remote Sens 9:1–33. https://doi.org/10.3390/rs9070712

    Article  Google Scholar 

  • Sánchez-Reyes UJ, Niño-Maldonado S, Barrientos-Lozano L, Treviño-Carreón J, Almaguer-Sierra P (2019) Seasonal microclimatic variation in a succession gradient of low thorn forest in Northeastern Mexico. Rev Biol Trop 67:266–277. https://doi.org/10.15517/rbt.v67i1.33353

  • Secretaría de Gobierno (2015) Decreto Gubernamental mediante el cual se aprueba el Programa de Manejo del Área Natural Protegida “Altas Cumbres”, localizada en los municipios de Jaumave y Victoria, Tamaulipas. Órgano del Gobierno Constitucional del Estado Libre y Soberano de Tamaulipas, Periódico Oficial del Estado de Tamaulipas, Tomo CXL, Secretaría General de Gobierno, Ciudad Victoria, Tamaulipas, México

  • Soberon J, Llorente J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488. https://doi.org/10.1046/j.1523-1739.1993.07030480.x

    Article  Google Scholar 

  • StatSoft I (2007) STATISTICA (data analysis software system) version 8.0. https://www.statsoft.com

  • Swanson ME et al (2011) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ 9:117–125. https://doi.org/10.1890/090157

    Article  Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier J-M (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  • Trejo I (2010) Las selvas secas del Pacífico mexicano. In: Ceballos G, Martínez L, García A, Espinoza E, Creel JB, Dirzo R (eds) Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México Fondo de Cultura Económica. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, D.F, Mexico, pp 41–51

    Google Scholar 

  • Treviño-Carreón J, Valiente-Banuet A (2005) La vegetación de Tamaulipas y sus principales asociaciones vegetales. In: Barrientos-Lozano L, Correa-Sandoval A, Horta-Vega JV, García-Jiménez J (eds) Biodiversidad tamaulipeca Vol. 1. Dirección General de Educación Superior Tecnológica, Instituto Tecnológico de Ciudad Victoria, Ciudad Victoria, Tamaulipas, México, pp 22–46

  • USGS (2019) Landsat 8 (L8) Data Users Handbook Version 5.0. EROS, Sioux Falls, South Dakota. https://www.usgs.gov/media/files/landsat-8-data-users-handbook. Accessed 11 May 2019

  • van Breugel M, Bongers F, Martínez-Ramos M (2007) Species dynamics during early secondary forest succession: recruitment, mortality and species turnover. Biotropica 39:610–619. https://doi.org/10.1111/j.1744-7429.2007.00316.x

    Article  Google Scholar 

  • Villaseñor JL (2016) Checklist of the native vascular plants of Mexico. Rev Mex Biodivers 87:559–902. https://doi.org/10.1016/j.rmb.2016.06.017

    Article  Google Scholar 

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736. https://doi.org/10.1111/j.1365-2745.2010.01664.x

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

    Article  Google Scholar 

  • Willig MR, Presley SJ (2018) Biodiversity and Disturbance. In: DellaSala DA, Goldstein MI (eds) The encyclopedia of the anthropocene, vol 3. Elsevier. Oxford, UK, pp 45–51

    Chapter  Google Scholar 

  • Whitfeld TJS, Lasky JR, Damas K, Sosanika G, Molem K, Montgomery RA (2014) Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica 46:538–548. https://doi.org/10.1111/btp.12136

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the facilities provided by the Tecnológico Nacional de México-Instituto Tecnológico de Cd. Victoria and by the Facultad de Ciencias Naturales-Universidad Autónoma de Querétaro, to accomplish this work. We would like to thank Ricardo Vizcaya, and José Norberto Lucio García for their valuable help during fieldwork. Pablo Ruiz and responsible authorities from Ej. Santa Ana and Ej. Rancho Nuevo, Victoria, Tamaulipas, granted permissions for accessing sampling areas. The first author acknowledges CONACYT for a Postdoctoral Grant.

Funding

The Consejo Nacional de Ciencia y Tecnología provided support to the first author for conducting this work (CONACYT-Mexico, Doctoral Scholarship No. 401277).

Author information

Authors and Affiliations

Authors

Contributions

Uriel Jeshua Sánchez-Reyes, Santiago Niño-Maldonado, Ludivina Barrientos-Lozano, and Jacinto Treviño-Carreón conceived the research idea. Data collection was conducted by Uriel Jeshua Sánchez-Reyes and Fatima Magdalena Sandoval-Becerra. Plant identification was conducted by Uriel Jeshua Sánchez-Reyes, Jacinto Treviño-Carreón, and Edmar Meléndez-Jaramillo. Data analysis was performed by Uriel Jeshua Sánchez-Reyes, Fatima Magdalena Sandoval-Becerra, Edmar Meléndez-Jaramillo, and Robert W. Jones. The first draft of the manuscript was written by Uriel Jeshua Sánchez-Reyes and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Uriel Jeshua Sánchez-Reyes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by George Yan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Reyes, U.J., Niño-Maldonado, S., Barrientos-Lozano, L. et al. Structural changes of vegetation and its association with microclimate in a successional gradient of low thorn forest in northeastern Mexico. Plant Ecol 222, 65–80 (2021). https://doi.org/10.1007/s11258-020-01088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-020-01088-z

Keywords

Navigation