Skip to main content
Log in

Structure and Energy of 〈110〉 Symmetric Tilt Boundaries in Polycrystalline Tungsten

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A computer simulation of the structure and energy of 〈110〉 symmetric tilt boundaries has been performed for polycrystalline tungsten. Calculations have been made using an embedded atom potential implemented in the LAMMPS software. It has been shown that structure of the 〈110〉 symmetric tilt boundaries can consist of a limited number of structural elements. The energy and width of grain boundaries for different misorientations, as well as energies of vacancy formation have been determined via molecular statistics simulation of grain boundaries. The correlation between the energy of vacancy formation in grain boundaries and changes in the boundary structure has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995).

    Google Scholar 

  2. S. Zinkle and L. Snead, “Designing radiation resistance in materials for fusion energy,” Ann. Rev. Mater. Res. 44, 241–267 (2014).

    Article  CAS  Google Scholar 

  3. D. Maisonnier, D. Campbell, I. Cook, L. D. Pace, L. Giancarli, J. Hayward, A. L. Puma, M. Medrano, P. Norajitra, M. Roccella, P. Sardain, M. Tran, and D. Ward, “Power plant conceptual studies in Europe,” Nucl. Fusion 47, 1524–1532 (2007).

    Article  CAS  Google Scholar 

  4. M. A. Tschopp and D. L. McDowell, “Structures and energies of Sigma3 asymmetric tilt grain boundaries in Cu and Al,” Phil. Mag. (2007) 3147–3173.

  5. I. I. Novoselov, A. Yu. Kuksin, and A. V. Yanilkin, “Energies of formation and structures of point defects at tilt grain boundaries in molybdenum,” Phys. Solid State 56, 1349–1355 (2014).

    Google Scholar 

  6. I. Novoselov and A. Yanilkin, “Impact of segregated interstitials on structures and energies of tilt grain boundaries in Mo,” Comp. Mater. Sci. 112, 276–281 (2016).

    Article  CAS  Google Scholar 

  7. T. Frolov, W. Setyawan, R. J. Kurtz, J. Marian, A. R. Oganov, R. E. Rudd, and Q. Zhu, “Grain boundary phases in bcc metals,” Nanoscale 10, 8253–8268 (2018).

    Article  CAS  Google Scholar 

  8. T. Frolov, Q. Zhu, T. Oppelstrup, J. Marian, and R. E. Rudd, “Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects,” Acta Mater. 159, 123–134 (2018).

    Article  CAS  Google Scholar 

  9. A. V. Vekman and B. F. Dem’yanov, “Structural vacancy model of grain boundaries,” Phys. Met. Metallogr. 120, 50–59 (2019).

    Article  Google Scholar 

  10. M.-C. Marinica, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime, “Interatomic potentials for modelling radiation defects and dislocations in tungsten,” J. Phys.: Condens. Matter 25, 395502 (2013).

    Google Scholar 

  11. http://lammps.sandia.gov.

  12. A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool Modelling Simul,” Mater. Sci. Eng. 18, 015012 (2010).

    Google Scholar 

  13. A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).

    Article  Google Scholar 

  14. D. Scheiber, R. Pippan, P. Puschnig, and L. Romaner, “Ab initio calculations of grain boundaries in bcc metals,” Modell. Simul. Mater. Sci. Eng. 24, 035013 (2016).

    Article  Google Scholar 

  15. P. Gas, D. L. Beke, and J. Bernardino, “Grain-boundary diffusion: Analysis of the C kinetic regime,” Phil. Mag. Lett. 65, 133–139 (1992).

    Article  Google Scholar 

  16. T. Surholt, Yu. Mishin, and Chr. Herzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in type-B and type-C kinetic regimes,” Phys. Rev. B 50, 3577–3587 (1994).

    Article  CAS  Google Scholar 

  17. V. S. Divinski, G. Reglitz, and G. Wilde, “Grain boundary self-diffusion in polycrystalline nickel of different purity levels,” Acta Mater. 58, 386–395 (2010).

    Article  CAS  Google Scholar 

  18. D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, “Grain boundary width, energy and self-diffusion in nickel: effect of material purity,” Acta Mater. 61, 5188–5197 (2013).

    Article  CAS  Google Scholar 

  19. G. J. Thomas, R. W. Siegel, and J. A. Eastman, “Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation,” Scr. Metall. Mater. 24, 201–206 (1990).

    Article  CAS  Google Scholar 

  20. B. Fultz, H. Kuwano, and H. Ouyang, “Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition,” J. Appl. Phys. 77, 3458–3466 (1995).

    Article  CAS  Google Scholar 

  21. H. Rösner, C. T. Koch, and G. Wilde, “Strain mapping along Al–Pb interfaces,” Acta Mater. 58, 162–172 (2010).

    Article  Google Scholar 

  22. C N. Chen, L.-L. Niu, Y. Zhang, X. Shu, H.-B. Zhou, S. Jin, G. Ran, G.-H. Lu, and F. Gao, “Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten,” Sci. Rep. 6, 36955 (2016).

    Article  CAS  Google Scholar 

  23. D. Scheiber, V. I. Razumovskiy, P. Puschnig, R. Pippan, and L. Romaner, “Ab initio description of segregation and cohesion of grain boundaries in W–25 at % Re alloys,” Acta Mater. 88, 180–189 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to express their gratitude to Yu.N. Gornostyrev for consultation and assistance in the discussion of the results.

Funding

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Function” АААА-А19-119012990095-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stupak, M.E., Urazaliev, M.G. & Popov, V.V. Structure and Energy of 〈110〉 Symmetric Tilt Boundaries in Polycrystalline Tungsten. Phys. Metals Metallogr. 121, 797–803 (2020). https://doi.org/10.1134/S0031918X20080116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20080116

Keywords:

Navigation