Skip to main content
Log in

Short-Range Order Evolution in Nanocrystalline Mechanically Activated Fe–Cr Alloys in the Process of Annealing

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Nanocrystalline Fe–Cr alloys synthesized from pure components in a planetary ball mill with a chromium content of 20–48 at % were annealed for 4 h at temperatures of Tan = 400–700°C. Short-range order (SRO) evolution and phase separation dependent on Tan were studied using Mössbauer spectroscopy and X-ray diffraction. The precipitation of the σ-FeCr phase was observed only in the samples with 48 at % of Cr at Tan = 600 and 700°C. For all the samples, the grain growth began most intensively from 400°C, and the higher the Cr content in an alloy, the smaller the final size of grains after Tan = 700°C. The analysis of behavior of the mean hyperfine field on Fe nuclei and distribution of the hyperfine field width depending on Tan, as well as fitting of Mössbauer spectra with spectral components corresponding to the α (Cr depleted) and α' (Cr rich) phases, demonstrated that the mechanically alloyed Fe-Cr samples were characterized by weak short-range separation passing at Tan = 400°C to a nearly statistically uniform distribution of atoms. Heterogeneous short-range order with the α and α' regions was formed in the alloys with 30 at % of Cr and more after annealing at 500–700°C. An analysis with the material balance equation led to our conclusion about the existence of the grain boundary segregations of Cr atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. L. Klueh and D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (ASTM stock Number: MONO3, USA, 2001).

  2. W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, “Phase equilibria and thermodynamic properties in the Fe–Cr system,” Crit. Rev. Solid State Mater. Sci. 35, 125–152 (2010).

    Article  CAS  Google Scholar 

  3. T. Koyano, U. Mizutani, and H. Okamoto, “Evaluation of the controversial σ → (Cr) + (α–Fe) eutectoid temperature in the Fe–Cr system by heat treatment of mechanically alloyed powder,” J. Mater. Sci. Lett. 14, 1237–1240 (1995).

    Article  CAS  Google Scholar 

  4. M. Murugesan and H. Kuwano, “Magnetic properties of nano-crystalline Fe–Cr alloys prepared by mechanical alloying,” IEEE Trans. Magn. 35, 3499–3501 (1999).

    Article  CAS  Google Scholar 

  5. A. Fnidiki, C. Lemoine, and J. Teilet, “Properties of mechanically alloyed Fe100 – xCrx powder mixtures: Mössbauer study,” Phys. B 357, 319–325 (2005).

    Article  CAS  Google Scholar 

  6. B. Pandey, M. A. Rao, H. C. Verma, and S. Bhargava, “Mössbauer spectroscopic studies of Fe–20 wt % Cr ball milled alloy,” Hyperfine Interact. 169, 1259–1266 (2006).

    Article  CAS  Google Scholar 

  7. E. P. Yelsukov, D. A. Kolodkin, A. L. Ul’yanov, and V. E. Porsev, “The initial stage of mechanical alloying in Cr–Fe binary systems,” Colloid J. 77, 143–153 (2015).

    Article  CAS  Google Scholar 

  8. E. P. Elsukov, A. L. Ul’yanov, V. E. Porsev, D. A. Kolodkin, A. V. Zagainov, and O. M. Nemtsova, “Peculiarities of mechanical alloying of high-concentration Fe–Cr alloys,” Phys. Met. Metallogr. 119, 153–160 (2018).

    Article  CAS  Google Scholar 

  9. E. P. Yelsukov, A. L. Ul’yanov, D. A. Kolodkin, and V. E. Porsev, “Kinetics of mechanochemical dissolution of chromium in iron,” Colloid J. 78, 443–447 (2016).

    Article  CAS  Google Scholar 

  10. M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschöpe, and R. Birringer, “Unraveling the nature of room temperature grain growth in nanocrystalline materials,” Acta Mater. 56, 4255–4266 (2008).

    Article  CAS  Google Scholar 

  11. R. Kirchheim, “Grain coarsening inhibited by solute segregation,” Acta Mater. 50, 413–419 (2002).

    Article  CAS  Google Scholar 

  12. I. Mirebeau and G. Parette, “Neutron study of the shot range order inversion in Fe1 – xCrx,“ Phys. Rev. B 82, 104203–1–5 (2010).

    Article  Google Scholar 

  13. A. Froideval, R. Iglesias, R. M. Samaras, S. Schhuppler, P. Nagel, D. Grolimund, M. Victoria, and W. Hoffelner, “Magnetic and structural properties of FeCr alloys,” Phys. Rev. Lett. 99, 237201–1–4 (2007).

    Article  Google Scholar 

  14. N. P. Filippova, V. A. Shabashov, and A. L. Nikolaev, “Mössbauer study of irradiation-accelerated short-range ordering in binary Fe–Cr alloys,” Phys. Met. Metallogr. 90, 145–152 (2000).

    Google Scholar 

  15. A. Jacob, E. Povoden-Karadeniz, and E. Kozeschnik, “Revised thermodynamic description of the Fe–Cr system based on an improved sublattice model of the σ phase,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 60, 16–28 (2018).

    Article  CAS  Google Scholar 

  16. R. Idczak, R. Konieczny, and J. Chojcan, “Atomic short-range order in Fe1 – xCrx alloys studied by 57Fe Mössbauer spectroscopy,” J. Phys Chem. Solids 73, 1095–1098 (2012).

    Article  CAS  Google Scholar 

  17. S. M. Dubiel and J. Zukrowski, “Phase-decomposition-related short-rang odering in a Fe–Cr alloy,” Acta Mater. 61, 6207–6212 (2013).

    Article  CAS  Google Scholar 

  18. S. M. Dubiel and J. Cieslak, “Short-range order in iron-rich Fe–Cr alloys as revealed by Mössbauer spectroscopy,” Phys. Rev. B 83, 180202-1–180202-4 (2011).

    Article  Google Scholar 

  19. G. A. Dorofeev, A. N. Streletskii, I. V. Povstugar, and A. V. Protasov, and E.P. Elsukov, “Determination of nanoparticle sizes by X-ray diffraction,” Colloid J. 74, 675–685 (2012).

    Article  CAS  Google Scholar 

  20. V. V. Ovchinnikov, Mössbauer Analysis of the Atomic and Magnetic Structure of Alloys (Cambridge Int. Science, 2006).

    Google Scholar 

  21. E. V. Voronina, N. V. Ershov, A. L. Ageev, and Yu. A. Babanov, “Regular algorithm for the solution of the inverse problem in Mössbauer spectroscopy,” Phys. Status Solidi B 160, 625–634 (1990).

    Article  CAS  Google Scholar 

  22. G. Y. Vélez and G. A. Pérez Alcázar, “Influence of atomic ordering on sigma phase precipitation of the Fe50Cr50 alloy,” J. Alloys Compd. 644, 1009–1012 (2015).

    Article  Google Scholar 

  23. G. K. Wertheim, V. Jaccarino, J. H. Wernick, and D. N. E. Buchanan, “Range of the exchange interaction in iron alloys,” Phys. Rev. Lett. 12, 24–27 (1964).

    Article  Google Scholar 

  24. H. Kuwano, Y. Ishikawa, T. Yoshimura, and Y. Hamaguchi, “Characterization of the spinodal decomposition of Fe−Cr alloys by Mössbauer spectroscopy,” Hyperfine Interact. 69, 501–504 (1992).

    Article  Google Scholar 

  25. H. Kuwano, Y. Nakamura, K. Ito, and T. Yamada, “Spinodal decomposition of Fe–Cr–Ni alloys studied by Mössbauer spectroscopy,” Nuovo Cimento D 18, 259–262 (1996).

    Article  Google Scholar 

  26. J. Cieslak and S. M. Dubiel, “Nucleation and growth versus spinodal decomposition in Fe–Cr alloys: Mössbauer-effect modelling,” J. Alloys Compd. 269, 208–218 (1998).

    Article  CAS  Google Scholar 

  27. L. Trieb and G. Veith, “Kinetic study of short range order in α-CuAl alloys,” Acta Metall. 26, 185–196 (1978).

    Article  CAS  Google Scholar 

  28. L. R. Owen, H. Y. Playford, H. J. Stone, and M. G. Tucker, “A new approach to the analysis of short-range order in alloys using total scattering,” Acta Mater. 115, 155–166 (2016).

    Article  CAS  Google Scholar 

  29. L. M. Cowley, “An Approximate theory of order in alloys,” Phys. Rev. 77, 669–675 (1950).

    Article  CAS  Google Scholar 

  30. O. Brümmer, G. Dräger, and I. Mistol, “Determination of the short-range order in Fe–12.3 at %–Al alloys using the Mössbauer effect,” Ann. Phys. 28, 135–140 (1972).

    Article  Google Scholar 

Download references

Funding

This work was performed within the state task of the Ministry of Education and Science of the Russian Federation (project no. 0427-2019-0011) using the equipment of the Shared Facilities Center of the Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciencesс under the support of the Ministry of Education and Science of the Russian Federation within the Federal Target Program (unique project identifier RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Porsev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porsev, V.E., Ul’yanov, A.L. & Dorofeev, G.A. Short-Range Order Evolution in Nanocrystalline Mechanically Activated Fe–Cr Alloys in the Process of Annealing. Phys. Metals Metallogr. 121, 783–790 (2020). https://doi.org/10.1134/S0031918X20080086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20080086

Keywords:

Navigation