Skip to main content
Log in

First Discovery of a Nonophiolite-Type Spinel Lherzolite Xenolith in the Back-Arc Basin of the Mariana Island Arc System

  • MARINE GEOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The first sampling of mantle horizons underlying the ophiolite peridotite complex of the Mariana back-arc basin was carried out based on a spinel lherzolite xenolith in basanites from the submarine Esmeralda Volcano. The paper shows significant differences between the bulk, petrological, geochemical, and mineralogical compositions of this xenolith and similar characteristics of ophiolite peridotites dredged from the Central Trough of the north part of the Mariana Trench, on the west wall of one of the fault zones of the Santa Rosa Bank Fault (southern part of the trough), and ultramafic rocks dredged from the Conical and Torishima seamounts in the fore-arc part of the Mariana and Idzu-Bonin Island Arc Systems. Using different geothermometers and geobarometers, we revealed the PT conditions for the formation of Esmeralda xenolith’s mineral paragenesis. The optimal temperature is 950–1050°C and the pressure is 13–15 kbar. These parameters significantly exceed those suggested for the compared ophiolite peridotites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. A. Bazylev, R. Magakyan, S. A. Silant’ev, et al., “Petrology of hyperbasites of the Mamonia complex, Southwest Cyprus,” Petrologiya 1 (4), 348–378 (1993).

    Google Scholar 

  2. A. P. Gorshkov, V. A. Abramov, E. A. Sapozhnikov, et al., Geological structure of submerged Esmeralda volcano,” Vulkanol. Seismol., No. 4, 65–78 (1980).

  3. A. V. Koloskov, Ultrabasic Inclusions and Volcanic rocks as a Self-Regulating Geological System (Nauchnyi Mir, Moscow, 1999) [in Russian].

    Google Scholar 

  4. A. V. Koloskov, P. I. Fedorov, and V. A. Rashidov, “New data on the composition of products of quaternary volcanism at the northwestern margin of the South China Sea shelf zone and the problem of asthenospheric diapirism,” Russ. J. Pac. Geol. 10, 79–104 (2016).

    Article  Google Scholar 

  5. . V. Koloskov, Yu. A. Martynov, and V. V. Ananiev, “New isotope–geochemical and mineralogical data on the ultramafic xenoliths in the volcanic rocks of the Kamchatka–Koryak region: two types of mantle protolith in the modern island-arc system,” Russ. J. Pac. Geol. 11, 95–109 (2017)

    Article  Google Scholar 

  6. G. P. Ponomarev and M. Yu. Puzankov, Distribution of Rock-Forming Elements in the Mafic–Ultramafic Melt–Spinel System, Olivine, Orthopyroxene, Clinopyroxene, Plagioclase According to Experimental Data: Geological Application (Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, 2012) [in Russian].

  7. V. A. Rashidov, A. P. Gorhskov, and A. N. Ivanenko, “Magnetic studies over submerged Esmeralda and Sofu volcanoes,” in Analysis of Abyssal Structure of the Earth Crust and Upper Mantle in the Sea and Ocean Basins by Electromagnetic Methods (Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Moscow, 1981), pp. 213–218.

    Google Scholar 

  8. A. G. Rodnikov, L. P. Zabarinskaya, V. A. Rashidov, and N. A. Sergeeva, Geodynamic Models of Abyssal Structure of the Regions of Natural Disasters of Active Continental Margins (Nauchnyi Mir, Moscow, 2014) [in Russian].

    Google Scholar 

  9. E. A. Sapozhnikov, A. V. Koloskov, and V. A. Abramov, “Inclusions of ultramafic and mafic minerals in alkaline-olivine basalts of the underwater volcano Ile des Cendres (South China Sea),” in Geochemistry of Endogenous Processes (Irkutsk, 1979), pp. 14–18.

  10. V. A. Seliverstov, A. V. Koloskov, and V. M. Chubarov, “Lamproite-like potassium alkaline ultramafic rocks of the Valaginsky Ridge, Eastern Kamchatka,” Petrologiya 2 (2), 197–213 (1994).

    Google Scholar 

  11. V. S. Sobolev, N. L. Dobretsov, and N. V. Sobolev, “Classification of abyssal xenoliths and types of upper mantle,” Geol. Geofiz., No. 12, 37–42 (1962).

  12. V. S. Sobolev and V. G. Batanova, “Mantle lherzolites of the Troodos ophiolite complex, Cyprus: geochemistry of clinopyroxene,” Petrologiya 3 (5), 487–495 (1995).

    Google Scholar 

  13. P. I. Fedorov, A. V. Koloskov, and S. M. Lyapunov, “Geochemistry and petrology of the Late Cenozoic volcanic rocks of Cape Navarin (Eastern Koryak highland),” Dokl. Ross. Akad. Nauk 333, 246–249 (1993).

    Google Scholar 

  14. P. I. Fedorov, A. V. Koloskov, and S. M. Lyapunov, “Geochemistry and petrology of Late Cainozoe volcanic rocks of Cape Navarin (Eastern Koryak highland),” Geokhimiya, No. 9, 1284–1296 (1993).

    Google Scholar 

  15. N. Abe, M. Takami, and S. Arai, “Petrological feature of spinel lherzolite xenoliths from Oki-Dogo Island: an implication for variety of upper mantle peridotite beneath southwestern Japan,” Island Arc 12, 219–232 (2003).

    Article  Google Scholar 

  16. S. Arai, “Characterization of spinel peridotites by olivine-spinel relationships: review and interpretation,” Chem. Geol. 113, 191–204 (1994).

    Article  Google Scholar 

  17. S. H. Bloomer, B. Taylor, C. J. MacLeod, et al., “Early arc volcanism and ophiolite problem: a perspective from drilling in the Western Pacific,” in Active Margins and Marginal Basins of the Western Pacific, Geophysical Monograph Series vol. 88, Ed. by B. Taylor and J. Natland (American Geophysical Union, Washington, DC, 1995), pp. 1–30.

    Google Scholar 

  18. B. T. C. Davis and F. R. Boyd Jr., “The join Mg2Si2O6–CaMgSi2O6 at 30 kilobars pressure and its application to pyroxenes from kimberlites,” J. Geophys. Res. 71 (14), 3567–3576 (1966).

    Article  Google Scholar 

  19. A. S. Davis, S. H. Gunn, L.-B. Gray, et al., “Petrology and isotopic composition of Quaternary basanites dredget from the Bering Sea continental margin near Navarin Basin,” Can. J. Earth Sci. 30, 975–981 (1993).

    Article  Google Scholar 

  20. T. H. Dixon and R. J. Stern, “Petrology, chemistry, and isotopic composition of submarine volcanoes in the southern Mariana arc,” Geol. Soc. Am. Bull. 94 (10), 1159–1172 (1983).

    Article  Google Scholar 

  21. D. M. Francis, “The origin of amphibole in lherzolite xenoliths from Nunivak Island, Alaska,” J. Petrol. 17 (3), 357–378 (1976).

    Article  Google Scholar 

  22. M. Hirano, K. Hamuro, and N. Onuma, “Sr/Ca-Ba/Ca systematics in Higashi-Izu monogenetic volcano group, Izu Peninsula, Japan,” Geochem. J. 16, 311–320 (1982).

    Article  Google Scholar 

  23. E. Ito and R. J. Stern, “Oxygen- and strontium-isotopic investigations of subduction zone volcanism: the case of the volcano arc and the Marianas Island Arc,” Earth Planet. Sci. Lett. 76 (3–4), 312–320 (1986).

    Article  Google Scholar 

  24. V. S. Kamenetsky, A. V. Sobolev, J.-L. Joron, et al., “Petrology and geochemistry of Cretaceous ultramafic volcanic from Eastern Kamchatka,” J. Petrol. 36 (3), 637–661 (1995).

    Article  Google Scholar 

  25. P. Kretz, “Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data,” Geochim. Cosmochim. Acta 46, 411–421 (1982).

    Article  Google Scholar 

  26. Mantle Xenoliths: Monograph, Ed. by P. H. Nuxon (Wiley, Chichester, 1987).

    Google Scholar 

  27. J. Mercier, “Single-pyroxene thermobarometry,” Tectonophysics 70, 1–37 (1980).

    Article  Google Scholar 

  28. K. Michibayashi, Y. Ohara, R. J. Stern, et al., “Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana trench: results of Shinkai 6500 dive,” Geochem., Geophys., Geosyst. 10 (5), 1–17 (2009).

    Article  Google Scholar 

  29. Mori T. and Green, B. P. “Laboratory duplication of phase equilibria observed in natural garnet lherzolites,” J. Geol. 86, 83–97 (1978).

    Article  Google Scholar 

  30. C. Nonomiya, C. Arai, and T. Ishii, “Peridotites xenoliths from the Takashima seamount, Japan: an inside in to the upper mantle beneath the Sea of Japan,” Jpn. Mag. Miner. Petrol. Sci. 36 (1), 1–14 (2007).

    Google Scholar 

  31. Y. Ohara, S. Kasuga, and T. Ishii, “Peridotites from the Parece Vela Rift in the Philippine Sea: upper mantle material exposed in an extinct back-arc basin,” Proc. Jpn. Acad., Ser. B 72, 118–123 (1996).

    Google Scholar 

  32. Y. Ohara, R. Stern, T. Ishii, et al., “Peridotites from the Mariana Trench: first look at the mantle beneath on active back-arc basin,” Contrib. Mineral. Petrol. 143, 1–18 (2002).

    Article  Google Scholar 

  33. I. J. Parkinson and J. A. Pearce, “Peridotite from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting,” J. Petrol. 39 (9), 1577–1618 (1998).

    Article  Google Scholar 

  34. J. A. Pearce and I. J. Parkinson, Trace Element Models for Mantle Melting: Application to Volcanic Arc Petrogenesis Magmatic Processes and Plate Tectonics, Geological Society of London Special Publications vol. 76, Ed. by H. M. Prichard, (Geological Society of London, London, 1993), pp. 373–403.

    Google Scholar 

  35. K. D. Putirka, “Thermometers and barometers for volcanic systems,” Rev. Miner. Geochem. 69, 61–120 (2008).

    Article  Google Scholar 

  36. M. K. Reagan, B. B. Hanan, M. T. Heizler, et al., “Petrogenesis of volcanic rocks from Saipan and Rota, Mariana Islands, and implications for the evolution of nascent island arcs,” J. Petrol. 49 (3), 441–464 (2008).

    Article  Google Scholar 

  37. M. F. Roden, F. A. Frey, and D. M. Francis, “An example of consequent mantle metasomatism in peridotite inclusion from Nunivak Island, Alaska,” J. Petrol. 25 (2), 546–547 (1984).

    Article  Google Scholar 

  38. G. Sen and R. Jones, “Experimental equilibration of multicomponent pyroxenes in the spinel peridotite field: implications for practical thermometers and a possible barometer,” J. Geophys. Res.: Solid Earth 94, 17871–17880 (1989).

    Article  Google Scholar 

  39. S. K. Simakov, “Garnet-clinopyroxene and clinopyroxene geothermobarometry of deep mantle and crust eclogites and peridotites,” Lithos 106, 125–136 (2008).

    Article  Google Scholar 

  40. S. K. Simakov and L. A. Taylor, “Geobarometry for deep mantle eclogites: solubility of Ca-Tschermaks in clinopyroxene,” Int. Geol. Rev. 42, 534–544 (2000).

    Article  Google Scholar 

  41. R. J. Stern and L. D. Bibee, “Esmeralda Bank: geochemistry of an active submarine volcano in the Mariana Island Arc,” Contrib. Miner. Petrol. 86, 159–169 (1984).

    Article  Google Scholar 

  42. R. J. Stern, Sh. H. Bloomer, P.-N. Lin, et al., “Submarine arc volcanism in the southern Mariana Arc as an ophiolite analoque,” Tectophysics 168 (1–3), 151–170 (1989).

    Article  Google Scholar 

  43. R. J. Stern, S. H. Bloomer, F. Martinez, et al., “The composition of back-arc basin lower crust and upper mantle in the Mariana Trough: a first report,” Island Arc 5, 354–372 (1996).

    Article  Google Scholar 

  44. R. J. Stern, T. Yamazaki, S. Danishwar, et al., “Back-arc basin lower crust and upper mantle in the northern Mariana Trough studied with “Shinkai 6500,” J. Deep-Sea Res. 13, 47–61 (1997).

    Google Scholar 

  45. Y. Tamura, K. Tani, O. Ishizuka, et al., “Are arc basalts dry, wet, or both? Evidence from the Sumisu caldera volcano, Izu-Bonin Arc, Japan,” J. Petrol. 46 (9), 1769–1803 (2005).

    Article  Google Scholar 

  46. R. N. Thompson, “Some high-pressure pyroxenes,” Miner. Mag. 39, 768–787 (1974).

    Article  Google Scholar 

  47. P. R. A. Wells, “Pyroxene thermometry in simple and complex systems,” Contrib. Miner. Petrol. 62, 129–139 (1977).

    Article  Google Scholar 

  48. B. J. Wood and S. Banno, “Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems,” Contrib. Miner. Petrol. 42 (2), 109–124 (1973).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to V.V. Petrova for help in obtaining analytical material.

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 18-05-00410).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Koloskov, V. A. Rashidov or V. V. Ananyev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koloskov, A.V., Rashidov, V.A. & Ananyev, V.V. First Discovery of a Nonophiolite-Type Spinel Lherzolite Xenolith in the Back-Arc Basin of the Mariana Island Arc System. Oceanology 60, 548–564 (2020). https://doi.org/10.1134/S0001437020040128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437020040128

Keywords:

Navigation