Skip to main content
Log in

Picophytoplankton in Blagopoluchia Bay (Novaya Zemlya Archipelago) and Adjacent Part of the Kara Sea

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

Picophytoplankton abundance, biomass, and chlorophyll a concentration as well as contribution of picoalgae to total chlorophyll a, and species composition of phototrophic picoeukaryotes (cells size less than 3 µm) were studied in Blagopoluchia Bay (Novaya Zemlya archipelago) and the northwestern part of the Kara Sea in September 2017. In the Bay, the highest picophytoplankton abundance and biomass were found in the surface layer and averaged 0.75 × 109 cell/m3 and 1.49 mg С/m3 respectively. In the northwestern part of the Kara Sea, the highest abundance and biomass of picophytoplankton were observed in the 8 m layer and were 2.29 × 109 cells/m3 and 2.76 mg С/m3 respectively. The contribution of picophytoplankton to total chlorophyll a concentration varied from 12 to 24% in the Bay and reached 46% in the Kara Sea. The Illumina sequencing of the V4 region of 18S rRNA gene revealed eight classes of phototrophic picoeukaryotes. Mamiellophyceae dominated in the number of reads. Arctic endemic (Micromonas polaris) and widespread (Bathycoccus prasinos) species were revealed in both studied areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. B. Amelina, A. V. Drits, V. M. Sergeeva, et al., “Zooplankton in bays of the Novaya Zemlya Archipelago: composition, distribution, and role in phytoplankton grazing and biosedimentation,” Oceanology (Engl. Transl.) 58, 825–837 (2018).

  2. T. A. Belevich, L. V. Ilyash, A. B. Demidov, and M. V. Flint, “Picophytoplankton distribution at the Ob River section and in the western part of the Kara Sea,” Oceanology (Engl. Transl.) 59, 871–880 (2019).

  3. A. G. Zatsepin, P. O. Zavyalov, V. V. Kremenetskiy, et al., “The upper desalinated layer in the Kara Sea,” Oceanology (Engl. Transl.) 50, 657–667 (2010).

  4. S. A. Mosharov, “Distribution of the primary production and chlorophyll a in the Kara Sea in September of 2007,” Oceanology (Engl. Transl.) 50, 884–892 (2010).

  5. I. N. Sukhanova, M. V. Flint, V. M. Sergeeva, and V. V. Kremenetskiy, “Phytoplankton of the south-western part of the Kara Sea,” Oceanology (Engl. Transl.) 51, 978–992 (2011).

  6. I. N. Sukhanova, M. V. Flint, E. I. Druzhkova, et al., “Phytoplankton in the northwestern Kara Sea,” Oceanology (Engl. Transl.) 55, 547–560 (2015).

  7. I. N. Sukhanova, M. V. Flint, and V. M. Sergeeva, “Phytoplankton of the surface desalted lens of the Kara Sea,” Oceanology (Engl. Transl.) 52, 635–645 (2012).

  8. N. S. R. Agawin, C. M. Duarte, and S. Agusti, “Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production,” Limnol. Oceanogr. 45 (8), 1891–1899 (2000).

    Article  Google Scholar 

  9. E. J. Arar and G. B. Collins, Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin ain Marine and Freshwater Algae by Fluorescence, Revision 1.2 (US Environmental Protection Agency, Washington, DC, 1997).

    Google Scholar 

  10. S. Balzano, D. Marie, P. Gourvil, and D. Vaulot, “Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples,” ISME J. 6, 1480–1498 (2012).

    Article  Google Scholar 

  11. T. A. Belevich, L. V. Ilyash, I. A. Milyutina, et al., “Metagenomic analyses of White Sea picoalgae: first data,” Biochemistry (Moscow) 80, 1514–1521 (2015).

    Article  Google Scholar 

  12. T. A. Belevich, L. V. Ilyash, I. A. Milyutina, et al., “Phototrophic picoeukaryotes of Onega Bay, the White Sea: Abundance and species composition,” Moscow Univ. Biol. Sci. Bull. 72, 109–114 (2017).

    Article  Google Scholar 

  13. T. A. Belevich, L. V. Ilyash, I. A. Milyutina, et al., “Metagenomics of Bolidophyceae in plankton and ice of the White Sea,” Biochemistry (Moscow) 82, 1917–1928 (2017).

    Article  Google Scholar 

  14. B. C. Booth and R. A. Horner, “Microalgae on the Arctic Ocean section, 1994: species abundance and biomass,” Deep Sea Res., Part II 44, 1607–1622 (1997).

    Article  Google Scholar 

  15. M. T. Cottrell and D. L. Kirchman, “Photoheterotrophic microbes in the arctic ocean in summer and winter,” Appl. Environ. Microbiol. 75 (15), 4958–4966 (2009).

    Article  Google Scholar 

  16. A. B. Demidov, O. V. Kopelevich, S. A. Mosharov, S. V. Sheberstov, and S. V. Vazyulya, “Modeling Kara Sea phytoplankton primary production: development and skill assessment of regional algorithms,” J. Sea Res. 125, 1–17 (2017).

    Article  Google Scholar 

  17. E. S. Egge, T. V. Johannessen, T. Andersen, et al., “Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing,” Mol. Ecol. 24, 3026–3042 (2015).

    Article  Google Scholar 

  18. H. P. Hansen and F. Koroleff, “Determination of nutrients,” in Methods of Seawater Analysis, Ed. by K. Grashoff, (Wiley, Chichester, 1999), pp. 149–228.

    Google Scholar 

  19. M. Ichinomiya and A. Kuwata, “Seasonal variation in abundance and species composition of the Parmales community in the Oyashio region, western North Pacific,” Aquat. Microb. Ecol. 75 (3), 207–223 (2015).

    Article  Google Scholar 

  20. M. Ichinomiya, A. Lopes dos Santos, P. Gourvil, et al., “Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms,” ISME J. 10 (10), 2419–2434 (2016).

    Article  Google Scholar 

  21. E. S. Kilias, E.-M. Noethig, C. Wolf, and K. Metfies, “Picoeukaryote plankton composition off West Spitsbergen at the entrance to the Arctic Ocean,” J. Eukaryotic Microbiol. 61 (6), 569–579 (2014).

    Article  Google Scholar 

  22. E. Kilias, C. Wolf, E. M. Nothig, et al., “Protist distribution in the western Fram Strait in summer 2010 based on 454-pyrosequencing of 18S rDNA,” J. Phycol. 49 (5), 996–1010 (2013).

    Google Scholar 

  23. A. R. Kirkham, C. Lepère, L. E. Jardillier, et al., “A global perspective on marine photosynthetic picoeukaryote community structure,” ISME J. 7 (5), 922–936 (2013).

    Article  Google Scholar 

  24. W. K. W. Li, E. C. Carmack, F. A. McLaughlin, et al., “Space-for-time substitution in predicting the state of picoplankton and nanoplankton in a changing Arctic Ocean,” J. Geophys. Res.: Oceans 118, 5750–5759 (2013).

    Article  Google Scholar 

  25. C. Lovejoy, W. F. Vincent, S. Bonilla, et al., “Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in arctic seas,” J. Phycol. 43 (1), 78–89 (2007).

    Article  Google Scholar 

  26. M. Majaneva, J. M. Rintala, M. Piisila, et al., “Comparison of wintertime eukaryotic community from sea ice and open water in the Baltic Sea, based on sequencing of the 18S rRNA gene,” Polar Biol. 35 (6), 875–889 (2012).

    Article  Google Scholar 

  27. M. Marquardt, A. Vader, E. I. Stubner, et al., “Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, in West Spitsbergen, Norway),” Appl. Environ. Microbiol. 82 (6), 1868–1880 (2016).

    Article  Google Scholar 

  28. F. A. McLaughlin and E. C. Carmack, “Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009,” Geophys. Res. Lett. 37, L24602 (2010). https://doi.org/10.1029/2010GL045459

    Article  Google Scholar 

  29. S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton,” Limnol. Oceanogr. 45, 569–579 (2000).

    Article  Google Scholar 

  30. K. Metfies, W.-J. von Appen, E. Kilias, et al., “Biogeography and photosynthetic biomass of arctic marine picoeukaryotes during summer of the record sea ice minimum 2016,” PLoS One 11 (2), 1–20 (2016).

    Article  Google Scholar 

  31. S. Y. Moon-van der Staay, R. De Wachter, and D. Vaulot, “Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity,” Nature 409, 607–610 (2001).

    Article  Google Scholar 

  32. P. F. Moreira-Turcq, G. Cauwet, and J. M. Martin, “Contribution of flow cytometry to estimate picoplankton biomass in estuarine systems,” Hydrobiologia 462 (1–3), 157–168 (2001).

    Article  Google Scholar 

  33. F. Not, R. Massana, M. Latasa, D. Marie, et al., “Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas,” Limnol. Oceanogr. 50, 1677–1686 (2005).

    Article  Google Scholar 

  34. W. Orsi, Y. C. Song, S. Hallam, and V. Edgcomb, “Effect of oxygen minimum zone formation on communities of marine protists,” ISME J. 6 (8), 1586–1601 (2012).

    Article  Google Scholar 

  35. M. L. Paulsen, H. Doré, L. Garczarek, L. Seuthe, et al., “Synechococcus in the Atlantic gateway to the Arctic Ocean,” Front. Mar. Sci. 3 (191), 191–205 (2016).

    Article  Google Scholar 

  36. B. J. Peterson, J. McClelland, R. Curry, et al., “Trajectory shifts in the Arctic and subarctic freshwater cycle,” Science 313, 1061–1066 (2006).

    Article  Google Scholar 

  37. L. Polyak, R. B. Alley, J. T. Andrews, et al., “History of sea ice in the Arctic,” Q. Sci. Rev. 29, 1757–1778 (2010).

    Article  Google Scholar 

  38. C. Quast, E. Pruesse, P. Yilmaz, et al., “The SILVA ribosomal RNA gene database project: improved data processing and web-based tools,” Nucleic Acids Res. 41 (1), D590–D596 (2013).

    Article  Google Scholar 

  39. C. G. Ribeiro, M. D. Dominique, A. L. dos Santos, et al., “Estimating microbial populations by flow cytometry: comparison between instruments,” Limnol. Oceanogr: Methods. 14, 750–758 (2017).

    Article  Google Scholar 

  40. P. D. Schloss, S. L. Westcott, T. Ryabin, et al., “Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities,” Appl. Environ. Microbiol. 75 (23), 7537–7541 (2009).

    Article  Google Scholar 

  41. M. Simon, P. López-García, D. Moreira, and L. Jardillier, “New haptophyte lineages and multiple independent colonizations of freshwater ecosystems,” Environ. Microbiol. Rep. 5 (2), 322–332 (2013).

    Article  Google Scholar 

  42. A. Stamatakis, “RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies,” Bioinformatics 30, 1312–1313 (2014).

    Article  Google Scholar 

  43. R. Terrado, K. Scarcella, M. Thaler, et al., “Small phytoplankton in Arctic seas: vulnerability to climate change,” Biodiversity 14 (1), 2–18 (2013).

    Article  Google Scholar 

  44. M. Tragin and D. Vaulot, “Novel diversity within marine Mamiellophyceae (Chlorophyta) unveiled by metabarcoding,” Sci. Rep. 9, 5190 (2019). https://doi.org/10.1038/s41598-019-41680-6

    Article  Google Scholar 

  45. G. Tremblay, C. Belzile, M. Gosselin, et al., “Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes,” Aquat. Microb. Ecol. 54, 55–70 (2009).

    Article  Google Scholar 

  46. D. Vaulot, W. Eikrem, M. Viprey, and H. Moreau, “The diversity of small eukaryotic phytoplankton (≤ 3 mm) in marine ecosystems,” FEMS Microb. Rev. 32 (5), 795–820 (2008).

    Article  Google Scholar 

  47. P. G. Verity, C. Y. Robertson, C. R. Tronzo, et al., “Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton,” Limnol. Oceanogr. 37, 1434–1446 (1992).

    Article  Google Scholar 

  48. M. Waleron, K. Waleron, W. F. Vincent, and A. Wilmotte, “Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean,” FEMS Microbiol. Ecol. 59, 356–365 (2007).

    Article  Google Scholar 

  49. A. Z. Worden, “Picoeukaryote diversity in coastal waters of the Pacific Ocean,” Aquat. Microb. Ecol. 43, 165–175 (2006).

    Article  Google Scholar 

  50. W. Wu, B. Huang, Y. Liao, and P. Sun, “Picoeukaryotic diversity and distribution in the subtropical-tropical South China Sea,” FEMS Microbiol. Ecol. 89 (3), 563–579 (2014).

    Article  Google Scholar 

  51. F. Zhang, J. He, L. Lin, and H. Jin, “Dominance of picophytoplankton in the newly open surface water of the central Arctic Ocean,” Polar Biol. 38 (7), 1081–1089 (2015).

    Article  Google Scholar 

  52. F. Zhu, R. Massana, F. Not, et al., “Mapping of picoeukaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene,” FEMS Microbiol. Ecol. 52 (1), 79–92 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank P.N. Makkaveev and S.A. Shchuka for supplying hydrophysical and hydrochemical data.

Funding

This work was performed as part of the State Tasks of Moscow State University, part 2 (topic no. AAAA-A16-116021660052–0 and AAAA-A17-117120540067-0); the expedition was supported by the Russian Foundation for Basic Research (project no. 18–05–60069 Arctic); sample processing and data analysis, by the Russian Foundation for Basic Research (project no. 19–05–00026a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Belevich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belevich, T.A., Milyutina, I.A., Troitsky, A.V. et al. Picophytoplankton in Blagopoluchia Bay (Novaya Zemlya Archipelago) and Adjacent Part of the Kara Sea. Oceanology 60, 473–482 (2020). https://doi.org/10.1134/S0001437020040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437020040037

Keywords:

Navigation