Skip to main content
Log in

Waveform relaxation for fractional sub-diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We report a new kind of waveform relaxation (WR) method for general semi-linear fractional sub-diffusion equations, and analyze the upper bound for the iteration errors. It indicates that the WR method is convergent superlinearly, and the convergence rate is dependent on the order of the time-fractional derivative and the length of the time interval. In order to accelerate the convergence, we present the windowing WR method. Then, we elaborate the parallelism based on the discrete windowing WR method, and present the corresponding fast evaluation formula. Numerical experiments are carried out to verify the effectiveness of the theoretic work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. New York: Academic Press (1999)

  2. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simulat 64, 213–231 (2018)

    Article  Google Scholar 

  3. Metler, R, Jeon, JH, Cherstvy, AG, Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 16, 24128–24164 (2014)

    Article  Google Scholar 

  4. Svetukhin, V.V., Sibatov, R.T.: Kinetics of subdiffusive growth of new phase particles in supersaturated solid solutions. J Exp Theor Phys 120, 678–686 (2015)

    Article  Google Scholar 

  5. Bennett, K.M., Schmaidna, K.M., Bennett, R., Rowe, D.B., Lu, H., Hyde, J.S.: Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 50, 727–734 (2003)

    Article  Google Scholar 

  6. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J Comput Phys 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  7. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  8. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  9. Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE T Comput Aid D 1, 131–145 (1982)

    Article  Google Scholar 

  10. Vandewalle, S.: Parallel multigrid waveform relaxation for parabolic problems. Stuttgart: B. G. Teubner (1993)

  11. Miekkala, U., Nevanlinna, O.: Convergence of dynamic iteration methods for initial value problems. SIAM J Sci Stat Comput 8, 459–482 (1987)

    Article  MathSciNet  Google Scholar 

  12. Jiang, Y.L.: On time-domain simulation of lossless transmission lines with nonlinear terminations. SIAM J Numer Anal 42, 1018–1031 (2004)

    Article  MathSciNet  Google Scholar 

  13. Jiang, Y.L., Wing, O.: On monotone waveform relaxation for systems of nonlinear differential-algebraic equations. SIAM J Numer Anal 38, 170–185 (2000)

    Article  MathSciNet  Google Scholar 

  14. Jiang, Y.L., Chen, R.M.M.: Multisplitting waveform relaxation for systems of linear integral-differential-algebraic equations in circuit simulation. J Circuit Syst Comp 10, 205–218 (2000)

    Article  Google Scholar 

  15. Bartoszewski, Z., Kwapisz, M.: On error estimates for waveform relaxation methods for delay-differential equations. SIAM J Numer Anal 38, 639–659 (2000)

    Article  MathSciNet  Google Scholar 

  16. Gander, M.J.: A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations. Numer Linear Algebr 6, 125–145 (1999)

    Article  MathSciNet  Google Scholar 

  17. Gander, M.J.: Optimized schwarz methods. SIAM J Numer Anal 44, 699–731 (2006)

    Article  MathSciNet  Google Scholar 

  18. Gander, M.J., Zhao, H.K.: Overlapping Schwarz waveform relaxation for the heat equation in n-dimensions. BIT 42, 779–795 (2002)

    Article  MathSciNet  Google Scholar 

  19. Liu, J., Jiang, Y.L.: Waveform relaxation for reaction diffusion equations. J Comput Appl Math 235, 5040–5055 (2011)

    Article  MathSciNet  Google Scholar 

  20. Jiang, Y.L., Ding, X.L.: On waveform relaxation methods for fractional differential equations with the Caputo derivatives. J Comput Appl Math 238, 51–67 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ding, X.L., Jiang, Y.L.: Waveform relaxation method for fractional functional differential equations. Fract Calc Appl Anal 16, 573–594 (2013)

    Article  MathSciNet  Google Scholar 

  22. Ding, X.L., Jiang, Y.L.: Waveform relaxation method for fractional differential-algebraic equations. Fract Calc Appl Anal 17, 585–604 (2014)

    Article  MathSciNet  Google Scholar 

  23. Gaspar, F.J., Rodrigo, C.: Multigrid waveform relaxation for the time-fractional heat equation. SIAM J Sci Comput 39, A1201–A1224 (2017)

    Article  MathSciNet  Google Scholar 

  24. Wu, S.L.: Optimized overlapping Schwarz waveform relaxation for a class of time-fractional diffusion problems. J Sci Comput 72, 842–862 (2017)

    Article  MathSciNet  Google Scholar 

  25. Wu, S.L., Huang, C.M.: Asymptotic results of Schwarz waveform relaxation algorithm for time-fractional cable equations. Commun Comput Phys 25, 390–415 (2019)

    MathSciNet  Google Scholar 

  26. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. North-holland mathematics studies, 204. Amsterdam: Elsevier Science B. V. (2006)

  27. Schneider, W.R.: Completely monotone generalized Mittag-Leffler functions. Expo Math 14, 3–16 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Jiang, Y.L.: On Windowing waveform relaxation of initial value problems. Acta Math Appl Sin-E 22, 543–556 (2006)

    Article  MathSciNet  Google Scholar 

  29. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J Comput Phys 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  30. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun Comput Phys 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  31. Liao, H., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J Sci Comput 80, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments and valuable suggestions to improve the paper significantly.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11401589, 11871393, and 11871400), the Fundamental Research Funds for the Central Universities (Nos. 18CX02049A and 17CX02066), and the International Science and Technology Cooperation Program of Shaanxi Research and Development Plan (2019KWZ-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, YL., Wang, XL. et al. Waveform relaxation for fractional sub-diffusion equations. Numer Algor 87, 1445–1478 (2021). https://doi.org/10.1007/s11075-020-01014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01014-4

Keywords

Mathematics Subject Classification (2010)

Navigation