Skip to main content

Advertisement

Log in

Beneficial Effects of Coconut Oil in Treatment of Parkinson’s Disease

  • Published:
Neurophysiology Aims and scope

Parkinson’s disease (PD) is a heterogeneous neurodegenerative disorder, characterized by depletion of dopamine resulted from the death of dopaminergic neurons in the substantia nigra. The prevalence and incidence of PD is influenced by several factors, such as age, gender, ethnicity, genetic susceptibilities, and environmental exposures. Coconut oil (Coc) is a rich source of medium-chain triglycerides that are easily metabolized and give rise to ketones. Also, it contains antioxidants, such as vitamin E and polyphenolic compounds. It has been documented that Coc possesses significant pharmacological activities against obesity, insulin resistance, and neurodegenerative disorders, like Alzheimer’s disease and multiple sclerosis. Therefore, the purpose of this review was to describe the use of coconut oil in preventing PD and slowing its progression. Also, we tried to identify possible mechanisms by which Coc may exert its beneficial role in PD. The available literature related to Coc PD effects , in both animal models and clinical trials was screened. This review showed that Coc can be supplemented to decrease the risk of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Gandhi and A. Y. Abarmov, “Mechanism of oxidative stress in neurodegeneration,” Oxid. Med. Cell. Longev., 2012; Article ID 428010, 11 pages (2012).

    Google Scholar 

  2. L. M. de Lau and M. M. Breteler, “Epidemiology of Parkinson’s disease,” Lancet Neurol., 5, No. 6, 525–535 (2006).

    PubMed  Google Scholar 

  3. Z. S. Agim and J. R. Cannon, “Dietary factors in the etiology of Parkinson’s disease,” Biomed. Res. Int., 2015, 672838 (2015).

  4. L. M. Shulman, R. L. Taback, J. Bean, et al., “Comorbity of the nonmotor symptoms of Parkinson’s disease,” Mov. Disord., 16, No. 3, 507-510 (2001).

    CAS  PubMed  Google Scholar 

  5. G. DeMaagd and A. Philip, “Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis,” P. T., 40, No. 8, 504–532 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. O. B. Tysnes and A. Storstein, “Epidemiology of Parkinson’s disease,” J. Neural. Transm. (Vienna), 124, No. 8, 901–905 (2017).

    Google Scholar 

  7. K. Sethi, “Levodopa unresponsive symptoms in Parkinson disease,” Mov. Disord., 23, Suppl. 3, 521–533 (2008).

    Google Scholar 

  8. S. E. Seidl, J. A. Santiago, H. Bilyk, and J. A. Potashkin., “The emerging role of nutrition in Parkinson’s disease,” Front. Aging Neurosci., 6, No. 36 (2014).

  9. M. Healy-Stoffel and B. Levant, “N-3 (Omega-3) fatty acids: effects on brain dopamine systems and potential role in the etiology and treatment of neuropsychiatric disorders,” CNS Neurol. Disord. Drug. Targets, 17, No. 3, 216–232 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. T. Schirinzi, G. Martella, P. Imbriani, et al., “Dietary vitamin E as a protective factor for Parkinson’s disease: clinical and experimental evidence,” Front. Neurol., 2019, No. 10, 148 (2019).

    PubMed  PubMed Central  Google Scholar 

  11. W. M. Fernando, I. J. Martins, K. G. Goozee, et al., “The role of dietary coconut for the prevention and treatment of Alzheimer’s disease: potential mechanisms of action,” Br. J. Nutr., 114, No. 1, 1–14 (2015).

    CAS  PubMed  Google Scholar 

  12. A. Weerasekera, D. M. Sima, T. Dresselaers, et al., “Non-invasive assessment of disease progression and neuroprotective effects of dietary coconut oil supplementation in the ALS SOD1G93A mouse model: A 1H-magnetic resonance spectroscopic study,” Neuroimage Clin., 20, 1092–1105 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. G. A. G. Krishna, G. Raj, A. S. Bhatnagar, et al., “Coconut oil: Chemistry, production and its applications - A Review,” Ind. Coconut J., 73, 15–27 (2010).

    Google Scholar 

  14. D. J. Moore, A. B. West, V. L. Dawson, and T. M. Dawson., “Molecular pathophysiology of Parkinson’s disease,” Annu. Rev. Neurosci., 28, 57–87 (2005).

    CAS  PubMed  Google Scholar 

  15. N. Ball, W. P. Teo, S. Chandra, and J. Chapman, “Parkinson’s disease and the environment,” Front. Neurol., 10, No. 218 (2019).

  16. S. M. Fleming, “Mechanisms of gene-environment interactions in Parkinson’s disease,” Curr. Environ. Health. Rep., 4, No. 2, 192–199 (2017).

    CAS  PubMed  Google Scholar 

  17. L. Puspita, S. Y. Chung, and J.-W. Shim, “Oxidative stress and cellular pathologies in Parkinson’s disease,” Mol. Brain, 10, No. 1, 53 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. J. Blesa, I. Trigo-Damas, A. Quiroga-Varela, et al., “Oxidative stress and Parkinson’s disease,” Front. Neuroanat., 9, 91 (2015).

  19. C. W. Olanow, P. Jenner, and D. Brooks, “Dopamine agonists and neuroprotection in Parkinson’s disease,” Ann. Neurol., 44, 3 Suppl. 1, 167–174 (1998).

  20. A. Gaba, “Recent studies on nutrition and Parkinson’s disease prevention: A systematic review,” Open J. Prevent. Med., 5, No. 5, 197–205 (2015).

    Google Scholar 

  21. Muralidhara, S. V. Yenisetti, and S. C. Yenisetti, “Current understanding on the beneficial role of nutrition in Parkinson’s disease – an overview,” J. Aging Sci., 5, 177 (2017).

    Google Scholar 

  22. H. Suganuma, T. Hirano, Y. Arimoto, and T. Inakuma, “Effect of tomato intake on striatal monoamine level in a mouse model of experimental Parkinson’s disease,” J. Nutr. Sci. Vitaminol. (Tokyo), 48, No. 3, 251–254 (2002).

    CAS  Google Scholar 

  23. M. M. Essa, R. K. Vijayan, G. Castellano-Gonzalez, et al., “Neuroprotective effect of natural products against Alzheimer’s disease,” Neurochem. Res., 37, No. 9, 1829–1842 (2012).

    CAS  PubMed  Google Scholar 

  24. J. Peter, P. J. Houghton, and M. J. Howes, “Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease, Rev. Neurosignals, 14, 6–22 (2005).

    Google Scholar 

  25. J. P. E. Spencer, “The impact of flavonoids on memory: physiological and molecular considerations,” Chem. Soc. Rev., 38, No. 4, 1152–1161 (2009).

    CAS  PubMed  Google Scholar 

  26. P. Maher, “The potential of flavonoids for the treatment of neurodegenerative diseases,” Int. J. Mol. Sci., 20, No. 12, 3056 (2019).

    CAS  PubMed Central  Google Scholar 

  27. K. Vafeiadou, D. Vauzour, J. P. E. Spencer, “Neuroinflammation and its modulation by flavonoids,” Endocrin. Metab. Immun. Disord. Drug. Targets, 7, No. 3, 211–224 (2007).

    CAS  Google Scholar 

  28. M. Ayaz, A. Sadiq, M. Junaid, et al., “Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders,” Front. Aging Neurosci., https://doi.org/10.3389/fnagi.2019.00155,(2019)

  29. A. H. V. Schapira and C. W. Olanow, “Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions,” JAMA, 291, No. 3, 358–364 (2004).

    CAS  PubMed  Google Scholar 

  30. G. Hussain, L. Zhang, A. Rasul, et al., “Role of plantderived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: an update of recent data,” Molecules, 23, No. 4, 814. (2018).

    PubMed Central  Google Scholar 

  31. J. Orsavova, L. Misurcova, J. V. Ambrozova, et al., “Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids,” Int. J. Mol. Sci., 16, No. 6, 12871–12890 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. A. M. Marina, Y. B. Man, S. A. H. Nazimah, and I. Amin, “Antioxidant capacity and phenolic acids of virgin coconut oil,” Int. J. Food Sci. Nutr., 60, Suppl 2, 114–123 (2009).

    CAS  PubMed  Google Scholar 

  33. C. J. Wyatt, S. P. Carballido, and R. O. Mendez, “α- and γ-Tocopherol content of selected foods in the Mexican diet: effect of cooking losses,” J. Agric. Food Chem., 46, No. 11, 4657–4661 (1998).

    CAS  Google Scholar 

  34. M. DebMandal and S. Mandal, “Coconut (Cocos nucifera L.: Arecaceae) in health promotion and disease prevention,” Asian. Pac. J. Trop. Med., 4, No. 3, 241– 247 (2011).

    PubMed  Google Scholar 

  35. M. V. Liberato, A. S. Nascimento, S. D. Ayers, et al., “Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists,” PLoS One, 7, No. 5, e36297 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. L. K. Mischley, R. C. Lau, and R. D. Bennett, “Role of diet and nutritional supplements in Parkinson’s disease progression,” Oxid. Med. Cell Longev., 2017, Article ID 6405278, 9 pages (2017).

  37. J. Y. Shin, R. T. Pohlig, and B. Habermann, “Use of complementary health approaches in individuals with Parkinson’s disease,” J. Gerontol. Nurs., 43, No. 2, 46–54 (2017).

    PubMed  Google Scholar 

  38. L. M. Sayre, M. A. Smith, and G. Perry, “Chemistry and biochemistry of oxidative stress in neurodegenerative disease,” Curr. Med. Chem., 8, No. 7, 721–738 (2001).

    CAS  PubMed  Google Scholar 

  39. S. Przedborski, K. Tieu, C. Perier, Miquel Vila, “MPTP as a mitochondrial neurotoxic model of Parkinson’s disease,” J. Bioenerg. Biomembr., 36, No. 4, 375–379 (2004).

    CAS  PubMed  Google Scholar 

  40. A. H. Schapira, V. M. Mann, J. M. Cooper, et al., “Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease,” J. Neurochem., 55, No. 6, 2142–2145 (1990).

    CAS  PubMed  Google Scholar 

  41. V. S. Burchell, S. Gandhi, E. Deas, et al., “Targeting mitochondrial dysfunction in neurodegenerative disease: Part I,” Exp. Opin. Ther. Targets., 14, No. 4, 369–385 (2010).

    CAS  Google Scholar 

  42. L. Doty, “Coconut oil for Alzheimer’s disease?” Clin. Pract., 1, No. 2, 12–17 (2012).

    Google Scholar 

  43. M. F. McCarty, J. J. DiNicolantonio, and J. H. O’Keefe, “Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1,” Med. Hypotheses, 85, No. 5, 631–639 (2015).

    CAS  PubMed  Google Scholar 

  44. B. C. Perng, M. Chen, J. C. Perng, and P Jambazian., “A keto-mediet approach with coconut substitution and exercise may delay the onset of Alzheimer’s disease among middle-aged,” J. Prev. Alzheimers Dis., 4, No. 1, 51–57 (2017).

    CAS  PubMed  Google Scholar 

  45. C. Vandenberghe, V. St-Pierre, T. Pierotti, et al., “Tricaprylin alone increases plasma ketone response more than coconut oil or other medium-chain triglycerides: an acute crossover study in healthy adults,” Current Dev. Nutr., 1, No. 4, e000257 (2017).

    Google Scholar 

  46. A. A. M. Morris, “Cerebral ketone body metabolism,” J. Inherit. Metab. Dis., 28, No. 2, 109–121 (2005).

    CAS  PubMed  Google Scholar 

  47. K. Tieu, C. Perier, and C. Caspersen, et al., “Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease,” J. Clin. Invest., 112, No. 6, 892–901 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. K. J. Bough, J. Wetherington, B. Hassel, et al., “Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet,” Ann. Neurol., 60, No. 2, 223–235 (2006).

    CAS  PubMed  Google Scholar 

  49. T. B. Vanitallie, C. Nonas, A. Di Rocco, et al., “Treatment of Parkinson’s disease with diet-induced hyperketonemia: A feasibility study,” Neurology, 64, 728–730 (2005).

    CAS  PubMed  Google Scholar 

  50. M. Rahman, S. Muhammad, M. A. Khan, et al., “The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages,” Nat. Commun., 5, 3944 (2014).

    CAS  PubMed  Google Scholar 

  51. E. C. Graff, H. Fang, D. Wanders, and Robert L Judd, “Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2,” Metabolism, 65, No. 2, 102–113 (2016).

    CAS  PubMed  Google Scholar 

  52. F. Coppedè, “The potential of epigenetic therapies in neurodegenerative diseases,” Front. Genet., 5, 220 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. X. Wu, P. S. Chen, S. Dallas, et al., “Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons,” Int. J. Neuropsychopharmacol., 11, No. 8, 1123–1134 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. W. Zhou, K. Bercury, J. Cummiskey, et al., “Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease,” J. Biol. Chem., 286, No. 17, 14941– 14951 (2011).

    PubMed Central  Google Scholar 

  55. M. Maalouf, J. M. Rho, and M. P. Mattson, “The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies,” Brain Res. Rev., 59, No. 2, 293–315 (2008).

    PubMed  PubMed Central  Google Scholar 

  56. A. Yoritaka, N. Hattori, K. Uchida, et al., “Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease,” Proc. Natl. Acad. Sci. USA, 93, No. 7, 2696–2701 (1996).

    CAS  PubMed  Google Scholar 

  57. J. Zhang, G. Perry, M. A. Smith, et al., “Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons,” Am. J. Pathol., 154, No. 5, 1423–1429 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Z. I. Alam, S. E. Daniel, A. J. Lees, et al., “Generalized increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease,” J. Neurochem., 69, No. 3, 1326–1329 (1997).

    CAS  PubMed  Google Scholar 

  59. E. Floor and M. G.Wetzel, “Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay,” J. Neurochem. 70, No. 1, 268–275 (1998).

    CAS  PubMed  Google Scholar 

  60. J. Sian-Hülsmann, S. Mandel, and M. B. H. Youdim, P. Riederer, “The relevance of iron in the pathogenesis of Parkinson’s disease,” J. Neurochem., 118, No. 6, 939– 957 (2011).

    PubMed  Google Scholar 

  61. S. Bharath, M. Hsu, D. Kaur, et al., “Glutathione, iron and Parkinson’s disease,” Biochem. Pharmacol., 64, Nos. 5-6, 1037–1048 (2002).

    CAS  PubMed  Google Scholar 

  62. W. Linert, E. Herlinger, R. F. Jameson, et al., “Dopamine, 6-hydroxydopamine, iron, and dioxygen – their mutual interactions and possible implication in the development of Parkinson’s disease,” Biochim. Biophys. Acta., 1316, No. 3, 160–168 (1996).

    PubMed  Google Scholar 

  63. R. Filograna, M. Beltramini, L. Bubacco, M. Bisaglia, “Anti-oxidants in Parkinson’s disease therapy: a critical point of view,” Curr. Neuropharmacol., 14, No. 3, 260– 271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. F. Yang, A. Wolk, N. Håkansson, et al., “Dietary antioxidants and risk of Parkinson’s disease in two population- based cohorts,” Mov. Disord., 32, No. 11, 1631– 1636 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Bourque, D. E. Dluzen, and T. Di Paolo, “Neuroprotective actions of sex steroids in Parkinson’s disease,” Front. Neuroendocrinol., 30, No. 2, 142–157 (2009).

    CAS  PubMed  Google Scholar 

  66. K. T. Lu, M. C. Ko, B. Y. Chen, et al., “Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging,” J. Agric. Food Chem., 56, No. 16, 6910–6913 (2008).

    CAS  PubMed  Google Scholar 

  67. I. Banjari, T. Marček, S. Tomić, and V. Y. Waisundara, “Forestalling the epidemics of parkinson’s disease through plant-based remedies,” Front. Nutr., 5 , 95 (2018).

  68. M. L. Prins, “Cerebral metabolic adaptation and ketone metabolism after brain injury,” J. Cerebr. Blood Flow Metab., 28, No. 1, 1–16 (2008).

    CAS  Google Scholar 

  69. L. B. Achanta and C. D. Rae, “β-Hydroxybutyrate in the brain: one molecule, multiple mechanisms,” Neurochem. Res., 42, No. 1, 35–49 (2017).

    CAS  PubMed  Google Scholar 

  70. J. B. Milder, L. P. Liang, and M. Patel, “Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet,” Neurobiol. Dis., 40, No. 1, 238–244 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. J. C. Newman and E. Verdin, “Ketone bodies as signaling metabolites,” Trends Endocrinol. Metab., 25, No. 1, 42–52 (2014).

    CAS  PubMed  Google Scholar 

  72. Y. Yang and A. A. Sauve, “NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy,” Biochim. Biophys Acta., 1864, No. 12, 1787–1800 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Z. B. Andrews, S. Diano, and T. L. Horvath, “Mitochondrial uncoupling proteins in the CNS: in support of function and survival,” Nat. Rev. Neurosci., 6, No. 11, 829–840 (2005).

    CAS  PubMed  Google Scholar 

  74. Y. Akaneya, M. Takahashi, H. Hatanaka, “Involvement of free radicals in MPP+ neurotoxicity against rat dopaminergic neurons in culture,” Neurosci. Lett., 193, No. 1, 53–56 (1995).

    CAS  PubMed  Google Scholar 

  75. D. T. Dexter, D. J. Brooks, A. E. Harding, et al., “Nigrostriatal function in vitamin E deficiency: clinical, experimental, and positron emission tomographic studies,” Ann. Neurol., 35, No. 3, 298–303 (1994).

    CAS  PubMed  Google Scholar 

  76. R. Ricciarelli, F. Argellati, M. A. Pronzato, and C. Domenicotti, “Vitamin E and neurodegenerative diseases,” Mol. Aspects Med., 28, Nos. 5–6, 591–606 (2007).

    CAS  PubMed  Google Scholar 

  77. K. G. Coupland, G. D. Mellick, P. A. Silburn, et al., “DNA methylation of the MAPT gene in Parkinson’s disease cohorts and modulation by vitamin E in vitro,” Mov. Disord., 29, No. 13, 1606–1614 (2014).

  78. C. A. Weber and M. E. Ernst, “Antioxidants, supplements, and Parkinson’s disease,” Ann. Pharmacother., 40, No. 5, 935–938 (2006).

    CAS  PubMed  Google Scholar 

  79. M. Etminan, S. S. Gill, and A. Samii, “Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis,” Lancet Neurol., 4, No. 6, 362– 365 (2005).

    CAS  PubMed  Google Scholar 

  80. S. M. Zhang, M. A. Hernán, H. Chen, et al., “Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk,” Neurology, 59, No. 8, 1161–1169 (2002).

    CAS  PubMed  Google Scholar 

  81. C. W. Olanow, “Dietary vitamin E and Parkinson’s disease: something to chew on, Lancet Neurol., 2, No. 2, 74 (2003).

    PubMed  Google Scholar 

  82. W. L. Scheider, L. A. Hershey, J. E. Vena, et al., “Dietary antioxidants and other dietary factors in the etiology of Parkinson’s disease,” Mov. Disord., 12, No. 2, 190–196 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. S. Ibrahim or E. M. El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, K.S., El-Sayed, E.M. Beneficial Effects of Coconut Oil in Treatment of Parkinson’s Disease. Neurophysiology 52, 169–175 (2020). https://doi.org/10.1007/s11062-020-09866-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09866-1

Keywords

Navigation