Skip to main content

Advertisement

Log in

One-pot synthesis of hyaluronic acid–coated gold nanoparticles as SERS substrate for the determination of hyaluronidase activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel ultrasensitive surface-enhanced Raman spectroscopy (SERS)-based method was developed for the determination of hyaluronidase (HAase), which was based on hyaluronic acid–coated gold nanoparticles (HA-AuNPs) as a substrate, via a facile one-pot method. The detection mechanism is based on HAase which can hydrolyze HA on HA-AuNPs into hyaluronic acid oligomers, causing the originally uniformly dispersed HA-AuNPs to be disintegrated into many smaller HA-AuNPs. These oligomers in turn increase the surface shielding of AuNPs, resulting in high aggregation tendencies. As a result, the original SERS substrate was disassembled, leading to a weakening of the SERS signal at 1173 cm−1. Malachite green was also used as a Raman probe to detect the change of SERS peak intensity and to quantify HAase. Compared with other methods for the determination of HAase, this method is more convenient and efficient; its determination limit was 0.4 mU mL−1. The recoveries of HAase spiked into human urine samples ranged from 97.2 to 103.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martinez-Quintanilla J, He D, Wakimoto H, Alemany R, Shah K (2015) Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther 23:108–118

    Article  CAS  Google Scholar 

  2. Ito H, Miyazaki T, Ono M, Sakurai H (1998) Antiallergic activities of rabdosiin and its related compounds: chemical and biochemical evaluations. Bioorg Med Chem 6:1051–1056

    Article  CAS  Google Scholar 

  3. Roberts JJ, Elder RM, Neumann AJ, Jayaraman A, Bryant SJ (2014) Interaction of hyaluronan binding peptides with glycosaminoglycans in poly(ethylene glycol) hydrogels. Biomacromolecules 15:1132–1141

    Article  CAS  Google Scholar 

  4. Lokeshwar VB, Estrella V, Lopez L, Kramer M, Gomez P, Soloway MS, Lokeshwar BL (2006) HYAL1-v1, an alternatively spliced variant of HYAL1 hyaluronidase: a negative regulator of bladder cancer. Cancer Res 66:11219–11227

    Article  CAS  Google Scholar 

  5. Liao YH, Jones SA, Forbes B, Martin GP, Brown MB (2005) Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 12:327–342

    Article  CAS  Google Scholar 

  6. Nossier AI, Eissa S, Ismail MF, Hamdy MA, Azzazy HME-S (2014) Direct detection of hyaluronidase in urine using cationic gold nanoparticles: a potential diagnostic test for bladder cancer. Biosens Bioelectron 54:7–14

    Article  CAS  Google Scholar 

  7. Skarmoutsos I, Skarmoutsos A, Katafigiotis I, Tataki E, Giagini A, Adamakis I, Alamanis C, Duvdevani M, Sitaras N, Constantinides C (2018) Hyaluronic acid and hyaluronidase as possible novel urine biomarkers for the diagnosis of prostate cancer. Med Oncol 35:97

    Article  Google Scholar 

  8. Kaufman DS, Shipley WU, Feldman AS (2009) Bladder cancer. Lancet 374:239–249

    Article  CAS  Google Scholar 

  9. Kramer MW, Escudero DO, Lokeshwar SD, Golshani R, Ekwenna OO, Acosta K, Merseburger AS, Soloway M, Lokeshwar VB (2011) Association of hyaluronic acid family members (HAS1, HAS2, and HYAL-1) with bladder cancer diagnosis and prognosis. Cancer 117:1197–1209

    Article  CAS  Google Scholar 

  10. Lokeshwar VB, Selzer MG (2008) Hyalurondiase: both a tumor promoter and suppressor. Semin Cancer Biol 18:281–287

    Article  CAS  Google Scholar 

  11. Vercruysse KP, Lauwers AR, Demeester JM (1995) Absolute and empirical determination of the enzymatic activity and kinetic investigation of the action of hyaluronidase on hyaluronan using viscosimetry. Biochem J 306:153–160

    Article  CAS  Google Scholar 

  12. Di Ferrante N (1956) Turbidimetric measurement of acid mucopolysaccharides and hyaluronidase activity. Biochem J 220:303–306

    Google Scholar 

  13. Steiner B, Cruce D (1992) A zymographic assay for detection of hyaluronidase activity on polyacrylamide gels and its application to enzymatic activity found in bacteria. Anal Biochem 200:405–410

    Article  CAS  Google Scholar 

  14. Pattanaargson S, Roboz J (1996) Determination of hyaluronidase activity in venoms using capillary electrophoresis. Toxicon 34:1107–1117

    Article  CAS  Google Scholar 

  15. Matysiak J, Derezinski P, Urbaniak B, Klupczynska A, Zalewska A, Kokot ZJ (2013) A new method for determination of hyaluronidase activity in biological samples using capillary zone electrophoresis. Biomed Chromatogr 27:1070–1078

    CAS  PubMed  Google Scholar 

  16. Kim J-W, Kim JH, Chung SJ, Chung BH (2009) An operationally simple colorimetric assay of hyaluronidase activity using cationic gold nanoparticles. Analyst 134:1291–1293

    Article  CAS  Google Scholar 

  17. Benchetrit LC, Pahuja SL, Gray ED, Edstrom RD (1977) A sensitive method for the assay of hyaluronidase activity. Anal Biochem 79:431–437

    Article  CAS  Google Scholar 

  18. Yang W, Ni J, Luo F, Weng W, Wei Q, Lin Z, Chen G (2017) Cationic carbon dots for modification-free detection of hyaluronidase via an electrostatic-controlled ratiometric fluorescence assay. Anal Chem 89:8384–8390

    Article  CAS  Google Scholar 

  19. Liu Q, Yan X, Lai Q, Su X (2019) Bimetallic gold/silver nanoclusters-gold nanoparticles based fluorescent sensing platform via the inner filter effect for hyaluronidase activity detection. Sensors Actuators B Chem 282:45–51

    Article  CAS  Google Scholar 

  20. Li X, Zhou Z, Tang Y, Zhang CC, Zheng Y, Gao J, Wang Q (2018) Modulation of assembly and disassembly of a new tetraphenylethene based nanosensor for highly selective detection of hyaluronidase. Sensors Actuators B Chem 276:95–100

    Article  CAS  Google Scholar 

  21. de Azeredo LAI, Leite SGF, Freire DMG, Benchetrit LC, Coelho RRR (2001) Proteases from actinomycetes interfere in solid media plate assays of hyaluronidase activity. J Microbiol Methods 45:207–212

    Article  Google Scholar 

  22. Patil S, Chaudhari B (2017) A simple, rapid and sensitive plate assay for detection of microbial hyaluronidase activity. J Basic Microbiol 57:358–361

    Article  CAS  Google Scholar 

  23. Ge J, Cai R, Yang L, Zhang L, Jiang Y, Yang Y, Cui C, Wan S, Chu X, Tan W (2018) Core-shell HA-AuNPs@SiNPs nanoprobe for sensitive fluorescence hyaluronidase detection and cell imaging. ACS Sustain Chem Eng 6:16555–16562

    Article  CAS  Google Scholar 

  24. Cheng D, Han W, Yang K, Song Y, Jiang M, Song E (2014) One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients. Talanta 130:408–414

    Article  CAS  Google Scholar 

  25. Song Y, Wang Z, Li L, Shi W, Li X, Ma H (2014) Gold nanoparticles functionalized with cresyl violet and porphyrin via hyaluronic acid for targeted cell imaging and phototherapy. Chem Commun 50:15696–15698

    Article  CAS  Google Scholar 

  26. Huang S-C, Ye J-Z, Shen X-R, Zhao Q-Q, Zeng Z-C, Li M-H, Wu D-Y, Wang X, Ren B (2019) Electrochemical tip-enhanced Raman spectroscopy with improved sensitivity enabled by a water immersion objective. Anal Chem 91:11092–11097

    Article  CAS  Google Scholar 

  27. Fu C, Jin S, Shi W, Oh J, Cao H, Jung YM (2018) Catalyzed deposition of signal reporter for highly sensitive surface-enhanced Raman spectroscopy immunoassay based on tyramine signal amplification strategy. Anal Chem 90:13159–13162

    Article  CAS  Google Scholar 

  28. Zong S, Wang Z, Yang J, Cui Y (2011) Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. Anal Chem 83:4178–4183

    Article  CAS  Google Scholar 

  29. Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L (2016) Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88:2149–2155

    Article  CAS  Google Scholar 

  30. Ma P, Liang F, Wang D, Yang Q, Ding Y, Yu Y, Gao D, Song D, Wang X (2015) Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS. Microchim Acta 182:863–869

    Article  CAS  Google Scholar 

  31. Ma P, Liang F, Diao Q, Wang D, Yang Q, Gao D, Song D, Wang X (2015) Selective and sensitive SERS sensor for detection of Hg2+ in environmental water base on rhodamine-bonded and amino group functionalized SiO2-coated Au-Ag core-shell nanorods. RSC Adv 5:32168–32174

    Article  CAS  Google Scholar 

  32. Shen M-Y, Chao C-F, Wu Y-J, Wu Y-H, Huang C-P, Li Y-K (2013) A design for fast and effective screening of hyaluronidase inhibitor using gold nanoparticles. Sensors Actuators B Chem 181:605–610

    Article  CAS  Google Scholar 

  33. Zhang L-S, Mummert ME (2008) Development of a fluorescent substrate to measure hyaluronidase activity. Anal Biochem 379:80–85

    Article  CAS  Google Scholar 

  34. Gu W, Yan Y, Zhang C, Ding C, Xian Y (2016) One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection. ACS Appl Mater Interfaces 8:11272–11279

    Article  CAS  Google Scholar 

  35. Magalhaes MR, da Silva NJ Jr, Ulhoa CJ (2008) A hyaluronidase from Potamotrygon motoro (freshwater stingrays) venom: isolation and characterization. Toxicon 51:1060–1067

    Article  CAS  Google Scholar 

  36. Lokeshwar VB, Obek C, Pham HT, Wei D, Young MJ, Duncan RC, Soloway MS, Block NL (2000) Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade. J Urol 163:348–356

    Article  CAS  Google Scholar 

  37. Lokeshwar VB, Soloway MS, Block NL (1998) Secretion of bladder tumor-derived hyaluronidase activity by invasive bladder tumor cells. Cancer Lett 131:21–27

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Developing Foundation of Jilin Province of China (No. 20200602047ZP) and Industrial Innovation Funds of Jilin Province of China (No. 2018C034-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pinyi Ma or Ying Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, D., Zhang, Y. et al. One-pot synthesis of hyaluronic acid–coated gold nanoparticles as SERS substrate for the determination of hyaluronidase activity. Microchim Acta 187, 604 (2020). https://doi.org/10.1007/s00604-020-04566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04566-3

Keywords

Navigation