Skip to main content
Log in

Diversified Aggregated Patterns of Alumina Inclusions in High-Al Iron Melt

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

High-concentration Al deoxidation resulting in diversified aggregated patterns of alumina inclusions in high-Al iron melt were observed, especially, a new alumina agglomerate with a ring shape was reported and discussed in the current work. A large number of small alumina particle originated from the explosive nucleation of alumina in Fe-Al-O reaction zone with high-concentration Al in a short time is the critical condition for forming the alumina-agglomerated ring. To understand the stabilities of the ring, the relationships among the liquid capillary force, the equivalent inner radius of ring, the filling angle, and the separation distance h were quantitatively investigated based on a mathematical model and experimental results. The new phenomenon and formation mechanism of alumina-agglomerated ring could be important to high-Al steel metallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. L.C. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M.X. Guo: ISIJ Int., 2016, vol. 56, pp. 926-35.

    Article  CAS  Google Scholar 

  2. K. Wasai, K. Mukai, and A. Miyanaga: ISIJ Int., 2002, vol. 42, pp. 459-66.

    Article  CAS  Google Scholar 

  3. Y. Jin, Z.Z. Liu, and R. Takata: ISIJ Int., 2010, vol. 50, pp. 371-79.

    Article  CAS  Google Scholar 

  4. T.B. Braun, J.F. Elliott, and M.C. Flemings: Metall. Trans. B, 1979, vol. 10B, pp.171-84.

    Article  CAS  Google Scholar 

  5. M.V. Ende, M.X. Guo, J. Proost, B. Blanpain, and P. Wollants: ISIJ Int., 2011, vol. 51, pp. 27-34.

    Article  Google Scholar 

  6. W. Yang, X.H. Wang, L.F. Zhang, and W.J. Wang: Steel Res. Int., 2013, vol. 84, pp. 878-91.

    Article  CAS  Google Scholar 

  7. G. Du, J. Li, Z.B. Wang, and C.B. Shi: Steel Res. Int., 2016, vol. 87, pp. 1-9.

    Article  Google Scholar 

  8. S. Kimura, Y. Nabeshima, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1013-21.

    Article  CAS  Google Scholar 

  9. W.Z. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2379-88.

    Article  Google Scholar 

  10. H.B. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936-45.

    Article  CAS  Google Scholar 

  11. H. Shibata, H. Yin, and T. Emi: Philos. Trans. 1998, vol. 356, pp. 957-66.

    Article  CAS  Google Scholar 

  12. K. Sasai and Y. Mizukami: ISIJ Int., 2001, vol. 41, pp. 1331-39.

    Article  CAS  Google Scholar 

  13. K. Sasai: ISIJ Int., 2014, vol. 54, pp. 2780-89.

    Article  CAS  Google Scholar 

  14. K. Sasai: ISIJ Int., 2018, vol. 58, pp. 469-77.

    Article  CAS  Google Scholar 

  15. K. Sasai, ISIJ Int., 2016, vol. 56, pp. 1013-22.

    Article  CAS  Google Scholar 

  16. L.Z. Zheng, A. Malfliet, P. Wollants, B. Blanpain, M.X. Guo, Acta Mater., 2016, vol. 120, pp. 443-52.

    Article  CAS  Google Scholar 

  17. S.P. He, G.J. Chen, Y.T. Guo, B.Y. Shen, and Q. Wang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 585-94.

    Article  Google Scholar 

  18. T. Yoshioka, T. Ideguchi, A. Karasev, Y. Ohba, and P. G. Jönsson: Steel Res. Int., 2017, vol. 87, pp. 1700287.

    Google Scholar 

  19. L.J. Zhou, H.Li, W.L. Wang, Z.Y. Wu, J Yu, and S.L. Xie: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2949–60.

    Article  Google Scholar 

  20. X.J. Fu, G.H. Wen , Q. Liu, P. Tang, J.Z. Li, and W. Li: Steel Res. Int., 2014, vol. 85, pp. 1-11.

    Article  Google Scholar 

  21. T. Wu, S.P. He, L.L. Zhu, and Q. Wang: Mater. Trans., 2016, vol. 57, pp. 58-63.

    Article  CAS  Google Scholar 

  22. B.L. Ennis, E. Jimenez-Melero, R.Mostert, B.Santillana, and P.D.Lee: Acta Mater., 2016, vol. 115, pp. 132-42

    Article  CAS  Google Scholar 

  23. M.K. Paek, J.J. Pak, and Y.B. Kang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2224-33.

    Article  Google Scholar 

  24. Y.J. Kang, M. Thunman, S.C. Du , T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 1483-89.

    Article  CAS  Google Scholar 

  25. I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.

    Article  CAS  Google Scholar 

  26. Y. Zhao, G.C. Wang, D.L. Shang, H. Lei, Q. Wang, and L. Cao: Steel Res. Int., 2018, vol. 89, pp. 1800255.

    Article  Google Scholar 

  27. T. Mizoguchi, Y. Ueshima, M. Sugiyama, and K. Mizukami: ISIJ Int., 2013, vol. 53, pp. 639-47.

    Article  CAS  Google Scholar 

  28. Y. Miki, H. Kitaoka, T. Sakuraya, and T. Fujii: ISIJ Int., 1992, vol. 32, pp. 142-49.

    Article  CAS  Google Scholar 

  29. Q.R. Tian, G.C. Wang, Y. Zhao, J. Li, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1149-64.

    Article  Google Scholar 

  30. Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3137-50.

    Article  Google Scholar 

  31. P. Rudi: J. Chem. Phys., 1989, vol. 91, pp. 5840-49.

    Article  Google Scholar 

  32. S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 79-85.

    Article  CAS  Google Scholar 

  33. B. Khurana, S. Spooner, M.B.V. Rao, G.G. Roy, and P. Srirangam: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1409-15.

    Article  Google Scholar 

  34. H.B. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 946-55.

    Article  CAS  Google Scholar 

  35. W.Z. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2092-103.

    Article  Google Scholar 

  36. D. Bratko, R.A. Curtis, H.W Blanch, and J.M. Prausnitz: J. Chem. Phys., 2001, vol. 115, pp. 3873-77.

    Article  CAS  Google Scholar 

  37. S. Singh, J. Houston, F.V. Swol, C.J. Brinker: Nat., 2006, vol. 442, pp.526.

    Article  CAS  Google Scholar 

  38. S.J.R. Simons, J.P.K. Seville, and M.J. Adams: Chem. Eng. Sci., 1994, vol. 49, pp. 2331-39.

    Article  CAS  Google Scholar 

  39. M. Dörmann, H.J. Schmid: Procedia Eng., 2015, vol. 102, pp. 14-23.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully express their appreciation to National Natural Science Foundation of China (51874170), National Natural Science Foundation of China (51634004, 51974155), for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guocheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 5, 2020; accepted September 10, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhao, Y., Xiao, Y. et al. Diversified Aggregated Patterns of Alumina Inclusions in High-Al Iron Melt. Metall Mater Trans B 51, 3051–3066 (2020). https://doi.org/10.1007/s11663-020-01978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01978-7

Navigation