Skip to main content
Log in

Mean Diffusion Coefficient Method in Studying Armco Iron Boriding Kinetics

  • Published:
Metal Science and Heat Treatment Aims and scope

Activation energy of boron diffusion during pack boriding of armco iron with a constant incubation time for boride formation is estimated using a mean diffusion coefficient model. Experimental verification is accomplished for the model by boriding armco iron at 1253 K for 5 h. Good correspondence is obtained between experimental and calculated Fe2B layer thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. I. E. Campos-Silva and G. A. Rodríguez-Castro, “Boriding to improve the mechanical properties and corrosion resistance of steels,” in: E. J. Mittemeijer and M. A. J. Somers (eds.), Thermochemical Surface Engineering of Steels, Woodhead-Elsevier Publishing, Cambridge (2015), pp. 651 – 697.

    Chapter  Google Scholar 

  2. D. N. Tsipas and J. Rus, “Boronizing of alloy steels,” J. Mater. Sci. Lett., 6, 118 – 120. (1987).

    Article  CAS  Google Scholar 

  3. J. A. Davies, P. J.Wilbur, D. I. Williamson, et al., “Ion implantation boriding of iron and AISI M2 steel using a high-current density, low energy, broad-beam ion source,” Surf. Coat. Technol., 103 – 104, 52 – 57 (1998).

    Article  Google Scholar 

  4. M. S. Keddam and M. Chentouf, “A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding,” Appl. Surf. Sci., 252, 393 – 399 (2005).

    Article  CAS  Google Scholar 

  5. C. I. VillaVelázquez-Mendoza, J. L. Rodríguez-Mendoza, V. Ibarra-Galván, et al. “Effect of substrate roughness, time and temperature on the processing of iron boride coatings: experimental and statistical approaches,” Int. J. Surf. Sci. Eng., 8, 71 – 91 (2014).

    Article  Google Scholar 

  6. I. Campos, M. Islas, E. González, et al., “Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing,” Surf. Coat. Technol., 201, 2717 – 2723 (2006).

    Article  CAS  Google Scholar 

  7. J. Zuno-Silva, M. Ortiz-Domínguez, M. Keddam, et al., “Boriding kinetics of Fe2B layers formed on AISI 1045 steel,” J. Min. Metall. Sect. B-Metall., 50, 101 – 107 (2015).

    Article  Google Scholar 

  8. M. Keddam, M. Elias-Espinosa, M. Ortiz-Domínguez, et al., “Pack-boriding of AISI P20 steel: Estimation of boron diffusion coefficients in the Fe2B layers and tribological behaviour,” Int. J. Surf. Sci. Eng., 11, 563 – 585 (2017).

    Article  CAS  Google Scholar 

  9. M. Keddam, “A diffusion model for the Fe2B layers formed on a ductile cast iron,” Acta Phys. Polonica A, 133, 1174 – 1177 (2018).

    Article  CAS  Google Scholar 

  10. M. Keddam and R. Chegroune, “A model for studying the kinetics of the formation of Fe2B boride layers at the surface of a gray cast iron,” Appl. Surf. Sci. 256, 5025 – 5030 (2010).

    Article  CAS  Google Scholar 

  11. R. D. Ramdan, T. Takaki, and Y. Tomita, “Free energy problem for the simulations of the growth of Fe2B phase using phase-field method,” Mater. Trans., 49, 2625 – 2631 (2008).

    Article  CAS  Google Scholar 

  12. Z. Nait Abdellah, M. Keddam, R. Chegroune, et al. “Simulation of the boriding kinetics of Fe2B layers on iron substrate by two approaches,” Matériaux et Techniques, 100, 581 – 588 (2012).

    Article  Google Scholar 

  13. M. Elias-Espinosa, M. Ortiz-Domínguez, M. Keddam, et al., “Growth kinetics of the Fe2B layers and adhesion on Armco iron substrate,” J. Mater. Eng. Perform., 23, 2943 – 2952 (2014).

    Article  CAS  Google Scholar 

  14. M. Keddam and M. Kulka, “Boriding kinetics of AISI D2 steel by using two different approaches,” Metal Sci. Heat Treat., No. 12, 13 – 20 (2018).

  15. L. G. Yu, X. J. Chen, K. A. Khor, and G. Sundararajan, “FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics,” Acta Mater., 53, 2361 – 2368 (2005).

    Article  CAS  Google Scholar 

  16. Y. Ugaste, “On the interstitial phase growth kinetics at diffusional precipitation of metals,” in: Chemical and Thermal Treatment of Metals and Alloys [in Russian], Belarus Technical Institute Press, Minsk (1977).

  17. M. Kulka, N. Makuch, A. Pertek, and L. Maldzinski, “Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2– BCl3 atmosphere,” J. Solid State Chem., 199, 196 – 203 (2013).

    Article  CAS  Google Scholar 

  18. M. Keddam, M. Kulka, N. Makuch, et al. “A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding of Armco iron: Effect of boride incubation times,” Appl. Surf. Sci., 298, 155 – 163 (2014).

    Article  CAS  Google Scholar 

  19. H. Planitz, G. Treffer, H. Konig, and G. Marx, “Zum Einfluss von Temperatur und Zeitauf die Erzeugung von Eisenboridschichten aus der Gasphase,” Neue Hutte, 27, 228 – 230 (1982).

    CAS  Google Scholar 

  20. I. Campos-Silva, M. Ortiz-Domínguez, H. Cimenoglu, et al., Surf. Eng., 27, 189 – 195 (2011).

    Article  CAS  Google Scholar 

  21. I. Campos, J. Oseguera, U. Figueroa, et al., “Kinetic study of boron diffusion in the paste-boriding process,” Mater. Sci. Eng. A, 352, 261 – 265 (2003).

    Article  Google Scholar 

  22. C. M. Brakman, A. W. J. Gommers, and E. J. Mittemeijer, “Boriding of Fe and Fe – C, Fe – Cr, and Fe – Ni alloys; Boride layer growth kinetics,” J. Mater. Res., 4, 1354 – 1370 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 30 – 34, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keddam, M., Kulka, M. Mean Diffusion Coefficient Method in Studying Armco Iron Boriding Kinetics. Met Sci Heat Treat 62, 326–330 (2020). https://doi.org/10.1007/s11041-020-00562-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00562-9

Key words

Navigation