Skip to main content
Log in

Approximation of the Stokes eigenvalue problem on triangular domains using a stabilized finite element method

  • Original paper
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, we consider a stabilized finite element method for the approximation of the Stokes eigenvalue problem on triangular domains. The method depends on orthogonal subscales that has proved to be an appropriate means for approximating eigenvalue problems in the framework of residual based approaches. We consider several isosceles triangular domains with various apex angles to investigate the characteristics of the eigensolutions in regards to the variation of the domain properties. This study presents the first finite element approximation to the solutions of the Stokes eigenvalue problem on triangular domains, to the best of our knowledge. We provide plots of several velocity and pressure fields corresponding to the fundamental eigenmodes to analyze the flow characteristics in detail. Furthermore, we consider the problem on triangular domains including a crack, and investigate the influence of the length of the slit on the fundamental mode to some extent. The results reveal the correlation between the domain properties and the eigenpairs, and the fact that there are various critical lengths of the slit where the eigenspace is notably affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Foias C, Manley O, Rosa R, Temam R (2001) Navier-Stokes equations and turbulence. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Nerli A, Camarri S (2006) Stokes eigenfunctions and galerkin projection of the disturbance equations in plane poiseuille flow: a systematic analytical approach. Meccanica 41(6):671–680

    Article  MathSciNet  Google Scholar 

  3. Schneider K, Farge M (2008) Final states of decaying 2D turbulence in bounded domains: Influence of the geometry. Physica D: Nonlinear Phenomena 237(14–17):2228–2233

    Article  MathSciNet  Google Scholar 

  4. Labrosse G, Leriche E, Lallemand P (2014) Stokes eigenmodes in cubic domain: their symmetry properties. Theor Comput Fluid Dyn 28(3):335–356

    Article  Google Scholar 

  5. Leriche E, Labrosse G (2000) High-order direct Stokes solvers with or without temporal splitting: numerical investigations of their comparative properties. SIAM J Sci Comput 22(4):1386–1410

    Article  MathSciNet  Google Scholar 

  6. Leriche E, Labrosse G (2011) Are there localized eddies in the trihedral corners of the Stokes eigenmodes in cubical cavity? Comput Fluids 43(1):98–101

    Article  Google Scholar 

  7. Gedicke J, Khan A (2018) Arnold-Winther mixed finite elements for Stokes eigenvalue problems. SIAM J Sci Comput 40(5):A3449–A3469

    Article  MathSciNet  Google Scholar 

  8. Han J, Zhang Z, Yang Y (2015) A new adaptive mixed finite element method based on residual type a posterior error estimates for the Stokes eigenvalue problem. Numer Methods Partial Differ Equ 31(1):31–53

    Article  MathSciNet  Google Scholar 

  9. Türk Ö, Boffi D, Codina R (2016) A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems. Comput Methods Appl Mech Eng 310:886–905

    Article  MathSciNet  Google Scholar 

  10. John V, Kaiser K, Novo J (2016) Finite element methods for the incompressible Stokes equations with variable viscosity. ZAMM J Appl Math Mech 96(2):205–216

    Article  MathSciNet  Google Scholar 

  11. Du S, Duan H (2018) Analysis of a stabilized finite element method for Stokes equations of velocity boundary condition and of pressure boundary condition. J Comput Appl Math 337:290–318

    Article  MathSciNet  Google Scholar 

  12. Pearson JW, Pestana J, Silvester DJ (2018) Refined saddle-point preconditioners for discretized Stokes problems. Numer Math 138(2):331–363

    Article  MathSciNet  Google Scholar 

  13. Santo ND, Deparis S, Manzoni A, Quarteroni A (2018) Multi space reduced basis preconditioners for parametrized Stokes equations. Comput Math Appl 77:1583–1604

    Article  MathSciNet  Google Scholar 

  14. Cioncolini A, Boffi D (2019) The mini mixed finite element for the Stokes problem: an experimental investigation. Comput Math Appl 77(9):2432–2446

    Article  MathSciNet  Google Scholar 

  15. Prato Torres R, Domínguez C, Díaz S (2019) An adaptive finite element method for a time-dependent Stokes problem. Numer Methods Partial Differ Equ 35(1):325–348

    Article  MathSciNet  Google Scholar 

  16. Bustamante C, Power H, Florez W (2013) A global meshless collocation particular solution method for solving the two-dimensional Navier-Stokes system of equations. Comput Math Appl 65(12):1939–1955

    Article  MathSciNet  Google Scholar 

  17. Li M, Tang T (1996) Steady viscous flow in a triangular cavity by efficient numerical techniques. Comput Math Appl 31(10):55–65

    Article  MathSciNet  Google Scholar 

  18. Chen L, Labrosse G, Lallemand P, Luo LS (2016) Spectrally accurate Stokes eigen-modes on isosceles triangles. Comput Fluids 132:1–9

    Article  MathSciNet  Google Scholar 

  19. Cao J, Wang Z, Chen L (2017) A triangular spectral method for the Stokes eigenvalue problem by the stream function formulation. Numer Methods Partial Differ Equ 34(3):825–837

    Article  MathSciNet  Google Scholar 

  20. Yolcu SY, Yolcu T (2012) Multidimensional lower bounds for the eigenvalues of Stokes and Dirichlet Laplacian operators. J Math Phys 53(4):043508

    Article  MathSciNet  Google Scholar 

  21. Babuška I, Osborn J (1991) Eigenvalue problems. In: Finite element methods (part 1), Handbook of numerical analysis, vol 2. Elsevier, Amsterdam, pp 641–787

  22. Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Methods Appl Mech Eng 190:1579–1599

    Article  MathSciNet  Google Scholar 

  23. Codina R (2008) Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl Numer Math 58:264–283

    Article  MathSciNet  Google Scholar 

  24. Codina R, Blasco J (1997) A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput Methods Appl Mech Eng 143:373–391

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Önder Türk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türk, Ö. Approximation of the Stokes eigenvalue problem on triangular domains using a stabilized finite element method . Meccanica 55, 2021–2031 (2020). https://doi.org/10.1007/s11012-020-01243-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01243-w

Keywords

Navigation