Skip to main content
Log in

Characterization of Melt Flow Index of Commercial Polystyrene Using Data from Interlaboratory Comparison

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The melt flow index (MFI) of commercial polystyrene samples has been investigated throughout an interlaboratory comparison study. The homogeneity samples have been assessed prior to the distribution over the participants. The one-factor analysis of variance model has been applied to separate and evaluate the uncertainty components arising from the analytical method and the heterogeneity of the samples. It has been shown that the samples are sufficiently homogenous. The stability of the samples has been monitored over 6 months. The stability and the uncertainty arising from the instability of the samples have been evaluated throughout the linear regression analysis. No significant trend could be detected over the stability assessment period. The results reported by the participants have been investigated. An almost normal distribution shape has been obtained with no evidence for outlier or systematic bias. The MFI value has been evaluated as consensus value from the results reported by the participants with a standard combined uncertainty of ~ 2.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. F. Giles, J. R. Wagner and E. M. Mount, Extrusion: the definitive processing guide and handbook. New York: William Andrew Inc. (2005).

    Google Scholar 

  2. R. M. Khan, A. Mushtaq, A. Israr and A. Nafees, Comparative study for melt flow index of high density polyethylene, low density polyethylene and linear low density polyethylene. Pak. J. Eng. Appl. Sci. 24(1), 18–25 (2019).

    Google Scholar 

  3. T. Bremner, A. Rudin and D. G. Cook, Melt flow index values and molecular weight distributions of commercial thermoplastics. J. Appl. Polym. Sci., 41 (1990) 1617–1627.

    Article  Google Scholar 

  4. J. K. Fink, Reactive polymers: fundamentals and applications: a concise guide to industrial polymers. Oxoford, United Kingdom: William Andrew, Inc. (2018).

    Google Scholar 

  5. A. Azmi, S. A. Sata, F. S. Rohman and N. Aziz., Melt flow index of low-density polyethylene determination based on molecular weight and branching properties. J. Phys. Conf. Ser. 1349 (2019) 012094.

    Article  Google Scholar 

  6. J. Scheirs, Compositional and failure analysis of polymers: a practical approach. New York, USA: Wiley (2000).

    Google Scholar 

  7. JCGM-200 ,International vocabulary of metrology—basic and general concepts and associated terms (VIM) (2008).

  8. Z. Guo, X. Li and H. Li, Certified reference materials and metrological traceability for mycotoxin analysis. J. AOAC Int. 102(6) (2019) 1695–1707.

    Article  Google Scholar 

  9. 17034, I. General requirements for the competence of reference material producers (2016)

  10. 35, I.G. ISO Guide 35: Reference material—guidance for characterization and assessment of homogeneity and stability (2017).

  11. 17043, I. Conformity assessmen—General requirements for proficiency testing (2010).

  12. F. Albano and C. ten Caten, Proficiency test for laboratories: a systematic review, Accred. Qual. Assur. 19 (2014) 245–257.

    Article  Google Scholar 

  13. H.-J. He, E. V. Stein, Y. Konigshofer, T. Forbes, F. L. Tomson, R. Garlick, E. Yamada, T. Godfrey, T. Abe, K. Tamura and M. Borges, Multilaboratory assessment of a new reference material for quality assurance of cell-free tumor DNA measurements, J. Mol. Diagn., 21(4) (2019) 658–676.

  14. S. Hurtado-Bermúdez and J. L. Mas, Determination of 210Po in low-level wild bilberries reference material for quality control assurance in environmental analysis using extraction chromatography and α-particle spectroscopy, Radiochim. Acta 108(2) (2020) 99–103.

    Article  Google Scholar 

  15. Q.S. H. Chui, C. Franciscone, J. Baptista and D. S. Rosa, An interlaboratory comparison of the metal flow index: relevant aspects for the participant laboratories. Polym. Test 26 (2007) 576–586.

    Article  Google Scholar 

  16. M. S. Bartlett and D. Kendall, The statistical analysis of variance-heterogeneity and the logarithmic transformation, Suppl. J. R. Stat. Soc. 8(1) (1946) 128–138.

    Article  MathSciNet  Google Scholar 

  17. N A. Weiss and C. A. Weiss, Elementary statistics. MA: Addison-Wesley Reading (1999).

    MATH  Google Scholar 

  18. A. Kumar and D. Misra, A review on the statistical methods and implementation to homogeneity assessment of certified reference materials in relation to uncertainty. MAPAN, 1–14 (2020).

  19. D1238, A. Standard test method for melt flow rates of thermoplastics by extrusion plastometer (2013).

  20. L. Yang, S. Liu, S. Tsoka and L. G. Papageorgiou, Mathematical programming for piecewise linear regression analysis, Exp. Syst. Appl. 44 (2016) 156–167.

    Article  Google Scholar 

  21. W. S. Cleveland and S. J. Devlin, Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83 (1988) 596–610.

    Article  Google Scholar 

  22. D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to linear regression analysis. Hoboken, New Jersey: Wiley, Inc. (2012).

    MATH  Google Scholar 

  23. 5725-2, I. Accuracy (trueness and precision) of measurement methods and results—part 2: basic method for the determination of repeatability and reproducibility of a standard measurement method (1994).

  24. Y. Hochberg, and A. C. Tamhane, Multiple comparison procedure. Hoboken, N.J: Wiley (1987).

    Book  Google Scholar 

  25. M. L. McHugh, Multiple comparison analysis testing in ANOVA. Biochem. Med. 21(3) (2011) 203–209.

    Article  MathSciNet  Google Scholar 

  26. T. P. J. Linsinger, Evaluation of CRM homogeneity in cases of insufficient method repeatability: comparison of Bayesian analysis with substitutes for ANOVA based estimates, Anal. Chim. Acta X, 5 (2020) 100049.

    Google Scholar 

  27. J. Neter, M. H. Kunter, C. J. Nachtsheim and W. Wasserman, Applied linear statistical models. Irwin Press (1996).

  28. T. Linsinger, J. Pauwels, A. M. van der Veen, H. Schimmel, A. Lamberty, Homogeneity and stability of reference materials. Accred. Qual. Assur., 6 (2001) 20–25.

    Article  Google Scholar 

  29. 30, I. G., Reference materials—selected terms and definitions. ISO (2015).

  30. 13528, I. Statistical methods for use in proficiency testing by interlaboratory comparison (2015).

  31. W. G. Cochran, The distribution of the largest of a set of estimated variances of a fraction of their total. Ann. Hum. Eugen., 11(1)(1941) 47–52.

    Article  MathSciNet  Google Scholar 

  32. Y. V. Nuland, ISO 9002 and the circle technique, Qual. Eng. 5 (1992) 269–291.

    Article  Google Scholar 

  33. S.L.R. Ellison, S. Burke, R. F. Walker, K. Heydorn, M. Mňnsson, J. Pauwels, W. Wegscheider and B. Te Nijenhuis, Uncertainty for reference materials certified by interlaboratory study: recommendations of an international study group. Accred. Qual. Assur. 6 (2001) 274–277.

    Article  Google Scholar 

  34. I. Kojim and K. Kakita, Comparative study of robustness of statistical methods for laboratory proficiency testing. Jpn. Soc. Anal. Chem., 30 (2014) 1165–1168.

    Google Scholar 

  35. B. Efron and R. J. Tibshirani, An introduction to the Bootstrap. New York: Chapman & Hall/CRC (1994).

    Book  Google Scholar 

  36. JCGM-100, Evaluation of measurement data—guide to the expression of uncertainty in measurement (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdel-Hakim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Hakim, A., Al-harbi, A.M. & Sadek, A.M. Characterization of Melt Flow Index of Commercial Polystyrene Using Data from Interlaboratory Comparison. MAPAN 36, 47–58 (2021). https://doi.org/10.1007/s12647-020-00394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-020-00394-1

Keywords

Navigation