Skip to main content

Advertisement

Log in

Increased Energy-Storage Density and Superior Electric Field and Thermally Stable Energy Efficiency of Aerosol-Deposited Relaxor (Pb0.89La0.11)(Zr0.70Ti0.30)O3 Films

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

(Pb0.89La0.11)(Zr0.70Ti0.30)O3 (PLZT 11/70/30) relaxor ferroelectric (RFE) films were fabricated on Pt/Si substrates by aerosol deposition, which not only enabled the deposition of a film at room temperature but also increased the dielectric breakdown strength. Perovskite phase and microstructural analyses were carried out by x-ray diffraction and scanning electron microscopy techniques. A PLZT 11/70/30 RFE AD film annealed at 550 °C exhibited the best dielectric properties (εr ~ 1090, tanδ ~ 0.028) and typical relaxor-type slim polarization–electric field (PE) hysteresis loop with relatively low remanent polarization (Pr ~ 6.81 µC/cm2) and coercive field (Ec ~ 118 kV/cm) even at a high applied electric field (~ 2500 kV/cm). These superior properties were achieved due to high phase purity, low defect densities, and well-tuned grain sizes of an annealed PLZT 11/70/30 RFE AD film. The PLZT 11/70/30 RFE AD film exhibited a high energy-storage density (Wrec ~ 44 J/cm3) which is attributed to the high dielectric breakdown strength, low hysteresis loss (Wloss ~ 10.3 J/cm3), and almost-electric-field-independent efficiency (η ~ 81%, change of ~ 6% with the change from low to high electric fields), calculated using the unipolar PE hysteresis loop. The excellent temperature stability of the energy efficiency of the PLZT 11/70/30 RFE AD film makes it a promising material for high-temperature energy-storage capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ε r :

Dielectric constant

tanδ :

Loss

P r :

Remanent polarization (µC/cm2)

E c :

Coercive field (kV/cm)

W rec :

Energy-storage density (J/cm3)

W loss :

Hysteresis loss (J/cm3)

η :

Efficiency

P :

Polarization (µC/cm2)

E :

Electric field (kV/cm)

C :

Capacitance (F)

V :

Voltage (V)

I :

Current (A)

P max :

Maximum polarization (µC/cm2)

T c :

Transition temperature (°C)

T m :

Dielectric maximum temperature (°C)

P s :

Net polarization (µC/cm2)

References

  1. H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, and J. Ryu, High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook, Adv. Funct. Mater., 2018, 28(42), p 1803665

    Google Scholar 

  2. M. Peddigari, H. Palneedi, G.-T. Hwang, and J. Ryu, Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications, J. Korean Ceram. Soc., 2019, 56(1), p 1-23

    CAS  Google Scholar 

  3. M.S. Whittingham, Materials Challenges Facing Electrical Energy Storage, MRS Bull., 2008, 33(4), p 411-419

    CAS  Google Scholar 

  4. Z. Sun, Z. Wang, Y. Tian, G. Wang, W. Wang, M. Yang, X. Wang, F. Zhang, and Y. Pu, Progress, Outlook, and Challenges in Lead-Free Energy-Storage Ferroelectrics, Adv. Electron. Mater., 2020, 6(1), p 1900698

    CAS  Google Scholar 

  5. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, and S. Zhang, Perovskite Lead-Free Dielectrics for Energy Storage Applications, Prog. Mater Sci., 2019, 102, p 72-108

    CAS  Google Scholar 

  6. S.A. Sherrill, P. Banerjee, G.W. Rubloff, and S.B. Lee, High to Ultra-High Power Electrical Energy Storage, Phys. Chem. Chem. Phys., 2011, 13, p 20714-20723

    CAS  Google Scholar 

  7. Q. Fan, M. Liu, C. Ma, L. Wang, S. Ren, L. Lu, X. Lou, and C.L. Jia, Significantly Enhanced Energy Storage Density with Superior Thermal Stability by Optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 Multilayer Structure, Nano Energy, 2018, 51(July), p 539-545

    CAS  Google Scholar 

  8. B. Fan, F. Liu, G. Yang, H. Li, G. Zhang, S. Jiang, and Q. Wang, Dielectric Materials for High-Temperature Capacitors, IET Nanodielectrics, 2018, 1(1), p 32-40

    Google Scholar 

  9. A. Kumar, K.C. James Raju, J. Ryu, and A.R. James, Composition Dependent Ferro-Piezo Hysteresis Loops and Energy Density Properties of Mechanically Activated (Pb1−xLax)(Zr0.60Ti0.40)O3 Ceramics, Appl. Phys. A Mater. Sci. Process., 2020, 126(3), p 1-10

    Google Scholar 

  10. J. Gao, Q. Liu, J. Dong, X. Wang, S. Zhang, and J.-F. Li, Local Structure Heterogeneity in Sm-Doped AgNbO3 for Improved Energy-Storage Performance, ACS Appl. Mater. Interfaces, 2020, 12(5), p 6097-6104

    CAS  Google Scholar 

  11. X. Zhou, H. Qi, Z. Yan, G. Xue, H. Luo, and D. Zhang, Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3–NaTaO3 Relaxor Ferroelectrics, ACS Appl. Mater. Interfaces, 2019, 11(46), p 43107-43115

    CAS  Google Scholar 

  12. Y. Fan, Z. Zhou, Y. Chen, W. Huang, and X. Dong, A Novel Lead-Free and High-Performance Barium Strontium Titanate-Based Thin Film Capacitor with Ultrahigh Energy Storage Density and Giant Power Density, J. Mater. Chem. C, 2020, 8(1), p 50-57

    CAS  Google Scholar 

  13. X. Hao, A Review on the Dielectric Materials for High Energy-Storage Application, J. Adv. Dielectr., 2013, 03(01), p 1330001

    Google Scholar 

  14. G.H. Haertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc., 1999, 82(4), p 797-818

    CAS  Google Scholar 

  15. L. Jin, F. Li, and S. Zhang, Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures, J. Am. Ceram. Soc., 2014, 97(1), p 1-27

    CAS  Google Scholar 

  16. A. Kumar, S.H. Kim, M. Peddigari, D.-H. Jeong, G.-T. Hwang, and J. Ryu, High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramic, Electron. Mater. Lett., 2019, 15(3), p 323-330

    CAS  Google Scholar 

  17. J.-H. Lim, J.-W. Kim, S.H. Lee, C. Park, J. Ryu, D.H. Choi, and D.-Y. Jeong, Fabrication of High Density BZN-PVDF Composite Film by Aerosol Deposition for High Energy Storage Properties, Korean J. Mater. Res., 2019, 29(3), p 175-182

    Google Scholar 

  18. J.-S. Lee, S. Yoon, J.-H. Lim, C.-K. Park, J. Ryu, and D.-Y. Jeong, Improvement of Energy Storage Characteristics of (Ba0.7Ca0.3)TiO3 Thick Films by the Increase of Electric Breakdown Strength from Nano-Sized Grains, Korean J. Mater. Res., 2019, 29(2), p 73-78

    Google Scholar 

  19. F. Forlani and N. Minnaja, Thickness Influence in Breakdown Phenomena of Thin Dielectric Films, Phys. Status Solidi, 1964, 4(2), p 311-324

    CAS  Google Scholar 

  20. N.H. Khansur, U. Eckstein, L. Benker, U. Deisinger, B. Merle, and K.G. Webber, Room Temperature Deposition of Functional Ceramic Films on Low-Cost Metal Substrate, Ceram. Int., 2018, 44(14), p 16295-16301

    CAS  Google Scholar 

  21. K. Sandeep, J. Pundareekam Goud, and K.C. James Raju, Resonant Spectrum Method for Characterizing Ba0.5Sr0.5TiO3 Based High Overtone Bulk Acoustic Wave Resonators, Appl. Phys. Lett., 2017, 111(1), p 012901

    Google Scholar 

  22. F. Ménil, H. Debéda, and C. Lucat, Screen-Printed Thick-Films: From Materials to Functional Devices, J. Eur. Ceram. Soc., 2005, 25(12), p 2105-2113

    Google Scholar 

  23. G. de Cicco, B. Morten, and M. Prudenziati, Elastic Surface Wave Devices Based on Piezoelectric Thick-Films, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1996, 43(1), p 73-77

    Google Scholar 

  24. H.-B. Jung, J.-H. Lim, M. Peddigari, J. Ryu, D.H. Choi, and D.-Y. Jeong, Enhancement of Energy Storage and Thermal Stability of Relaxor Pb0.92La0.08Zr0.52Ti0.48O3-Bi(Zn0.66Nb0.33)O3 Thick Films through Aerosol Deposition, J. Eur. Ceram. Soc., 2020, 40(1), p 63-70

    CAS  Google Scholar 

  25. C. Lee, M. Kim, M.-Y. Cho, S.-M. Koo, J.-M. Oh, and D. Lee, Electrical Effect of High-Field Induced Diffusive Metal in the Ceramic Film Deposited by the Aerosol Deposition Method, Electron. Mater. Lett., 2019, 15(6), p 760-768

    CAS  Google Scholar 

  26. H.-K. Kim, S.-H. Lee, S.-G. Lee, and Y.-H. Lee, Densification Mechanism of BaTiO3 Films on Cu Substrates Fabricated by Aerosol Deposition, Electron. Mater. Lett., 2015, 11(3), p 388-397

    CAS  Google Scholar 

  27. J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, J. Am. Ceram. Soc., 2006, 89, p 1834-1839

    CAS  Google Scholar 

  28. W. Andrysiewicz, J. Krzeminski, K. Skarżynski, K. Marszalek, M. Sloma, and A. Rydosz, Flexible Gas Sensor Printed on a Polymer Substrate for Sub-Ppm Acetone Detection, Electron. Mater. Lett., 2020, 16(2), p 146-155

    CAS  Google Scholar 

  29. C.-K. Park, S. Lee, J.-H. Lim, J. Ryu, D. Choi, and D.-Y. Jeong, Nano-Size Grains and High Density of 65PMN-35PT Thick Film for High Energy Storage Capacitor, Ceram. Int., 2018, 44(16), p 20111-20114

    CAS  Google Scholar 

  30. M. Peddigari, H. Palneedi, G.-T. Hwang, K.W. Lim, G.-Y. Kim, D.-Y. Jeong, and J. Ryu, Boosting the Recoverable Energy Density of Lead-Free Ferroelectric Ceramic Thick Films through Artificially Induced Quasi-Relaxor Behavior, ACS Appl. Mater. Interfaces, 2018, 10(24), p 20720-20727

    CAS  Google Scholar 

  31. S. Bin Kang, M.G. Choi, D.Y. Jeong, Y.M. Kong, and J. Ryu, Energy Storage Properties of Nano-Grained Antiferroelectric (Pb, La)(Zr, Ti)O3 Films Prepared by Aerosol-Deposition Method, IEEE Trans. Dielectr. Electr. Insul., 2015, 22(3), p 1477-1482

    Google Scholar 

  32. B. Lu, P. Li, Z. Tang, Y. Yao, X. Gao, W. Kleemann, and S.G. Lu, Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics, Sci. Rep., 2017, 7(February), p 1-8

    Google Scholar 

  33. M.R. Cicconi, N.H. Khansur, U.R. Eckstein, F. Werr, K.G. Webber, and D. Ligny, Determining the Local Pressure during Aerosol Deposition Using Glass Memory, J. Am. Ceram. Soc., 2020, 103(4), p 2443-2452

    CAS  Google Scholar 

  34. N.H. Khansur, U. Eckstein, K. Riess, A. Martin, J. Drnec, U. Deisinger, and K.G. Webber, Synchrotron X-Ray Microdiffraction Study of Residual Stresses in BaTiO3 Films Deposited at Room Temperature by Aerosol Deposition, Scr. Mater., 2018, 157, p 86-89

    CAS  Google Scholar 

  35. A. Kumar, K.C. James Raju, and A.R. James, Diffuse Phase Transition in Mechanically Activated (Pb1−xLax)(Zr0.60Ti0.40)O3 Electro-Ceramics, J. Mater. Sci. Mater. Electron., 2017, 28(18), p 13928-13936

    CAS  Google Scholar 

  36. A. Kumar, V.V. Bhanu Prasad, K.C. James Raju, and A.R. James, Ultra High Strain Properties of Lanthanum Substituted PZT Electro-Ceramics Prepared via Mechanical Activation, J. Alloys Compd., 2014, 599, p 53-59

    CAS  Google Scholar 

  37. J. Ryu, S. Priya, C.S. Park, K.Y. Kim, J.J. Choi, B.D. Hahn, W.H. Yoon, B.K. Lee, D.S. Park, and C. Park, Enhanced Domain Contribution to Ferroelectric Properties in Freestanding Thick Films, J. Appl. Phys., 2009, 106(2), p 024108

    Google Scholar 

  38. A.R. James, A. Kumar, V.V.B. Prasad, S.V. Kamat, V. Singh, P. Ghoshal, and A. Pandey, Tunability, Ferroelectric and Leakage Studies on Pulsed Laser Ablated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 Thin Films, Mater. Chem. Phys., 2018, 211, p 295-301

    CAS  Google Scholar 

  39. R.D. Klissurska, A.K. Tagantsev, K.G. Brooks, and N. Setter, Effect of Nb Doping on the Hysteresis Parameters of Sol-Gel Derived Thin Films, Microelectron. Eng., 1995, 29(1–4), p 271-274

    CAS  Google Scholar 

  40. M. Adachi, T. Matsuzaki, T. Yamada, T. Shiosaki, and A. Kawabata, Sputter-Deposition of [111]-Axis Oriented Rhombohedral PZT Films and Their Dielectric, Ferroelectric and Pyroelectric Properties, Jpn. J. Appl. Phys., 1987, 26(4 R), p 550-553

    CAS  Google Scholar 

  41. R. Jimenez, C. Alemany, and J. Mendiola, Top Electrode Induced Self-Polarization in CSD Processed SBT Thin Films, Ferroelectrics, 2002, 268, p 131-136

    Google Scholar 

  42. A. Kumar, J.Y. Yoon, A. Thakre, M. Peddigari, D.-Y. Jeong, Y.-M. Kong, and J. Ryu, Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics, J. Korean Ceram. Soc., 2019, 56(4), p 412-420

    CAS  Google Scholar 

  43. A. Bootchanont, N. Triamnak, S. Rujirawat, R. Yimnirun, D.P. Cann, R. Guo, and A. Bhalla, Local Structure and Evolution of Relaxor Behavior in BaTiO3–Bi(Zn0.5Ti0.5)O3 Ceramics, Ceram. Int., 2014, 40(9), p 14555-14562

    CAS  Google Scholar 

  44. S. Bin Kang, H.S. Kim, J.G. Lee, C.K. Park, J. Ryu, J.J. Choi, B.D. Hahn, L. Wang, and D.Y. Jeong, Dielectric Properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Film by Aerosol Deposition for Energy Storage Applications, Ceram. Int., 2016, 42(1), p 1740-1745

    Google Scholar 

  45. H.J. Lee, S.S. Won, K.H. Cho, C.K. Han, N. Mostovych, A.I. Kingon, S.H. Kim, and H.Y. Lee, Flexible High Energy Density Capacitors Using La-Doped PbZrO3 Anti-Ferroelectric Thin Films, Appl. Phys. Lett., 2018, 112(9), p 092901

    Google Scholar 

  46. Y. Zhao, X. Hao, and Q. Zhang, Energy-Storage Properties and Electrocaloric Effect of Pb(1–3x/2)LaxZr0.85Ti0.15O3 Antiferroelectric Thick Films, ACS Appl. Mater. Interfaces, 2014, 6(14), p 11633-11639

    CAS  Google Scholar 

  47. X. Hao, Y. Wang, J. Yang, S. An, and J. Xu, High Energy-Storage Performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 Relaxor Ferroelectric Thin Films, J. Appl. Phys., 2012, 112(11), p 114111

    Google Scholar 

  48. Y. Liu, X. Hao, and S. An, Significant Enhancement of Energy-Storage Performance of (Pb0.91La0.09)(Zr0.65Ti0.35)O3 Relaxor Ferroelectric Thin Films by Mn Doping, J. Appl. Phys., 2013, 114(17), p 174102

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2019R1A2B5B01070100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on Aerosol Deposition and Kinetic Spray Processes. This issue was organized by Dr. Kentaro Shinoda, National Institute of Advanced Industrial Science and Technology (AIST); Dr. Frank Gaertner, Helmut-Schmidt University; Prof. Changhee Lee, Hanyang University; Prof. Ali Dolatabadi, Concordia University; and Dr. Scooter Johnson, Naval Research Laboratory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kim, S.H., Thakre, A. et al. Increased Energy-Storage Density and Superior Electric Field and Thermally Stable Energy Efficiency of Aerosol-Deposited Relaxor (Pb0.89La0.11)(Zr0.70Ti0.30)O3 Films. J Therm Spray Tech 30, 591–602 (2021). https://doi.org/10.1007/s11666-020-01100-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01100-y

Keywords

Navigation