Skip to main content
Log in

Leadership Exponent in the Pursuit Problem for 1-D Random Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For n + 1 particles moving independently on a straight line, we study the question of how long the leading position of one of them can last. Our focus is the asymptotics of the probability pT,n that the leader time will exceed T when n and T are large. It is assumed that the dynamics of particles are described by independent, either stationary or self-similar, Gaussian processes, not necessarily identically distributed. Roughly, the result for particles with stationary dynamics of unit variance is as follows: \( L: = - \ln p_{T,n}/(T\ln n) = 1/d_{0} + o(1), \)where d0/(2π) is the power of the zero frequency in the spectrum of the leading particle, and this value is the largest in the spectrum. Previously, in some particular models, the asymptotics of L was understood as a sequential limit first over T and then over n. For processes that do not necessarily have non-negative covariances, the limit over T may not exist. To overcome this difficulty, the growing parameters T and n are considered in the domain \( c\;{\text{ln}}\;T < n \le CT \) where c > 1. The Lamperti transform allows us to transfer the described result to self-similar processes by changing the \( \ln p_{T,n} \) normalization to the value \( \ln T\ln n \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aurzada, F., Simon, T.: Persistence Probabilities and Exponents, Levy Matters. Lecture Notes in Mathematics, vol. 5, pp. 183–224. Springer, Cham (2015)

    MATH  Google Scholar 

  2. Aurzada, F. and Mukherjee, M.: Persistence probabilities of weighted sums of stationary Gaussian sequences. arXiv 2003.01192 (2020)

  3. Autezana, J., Buckley, J., Marzo, J., Olsen, J.-F.: Gap probabilities for the cardinal sine. J. Math. Anal. Appl. 396(2), 466–472 (2011)

    Article  MathSciNet  Google Scholar 

  4. Banueles, R., Smits, R.: Brownian motion in cones. Probab. Theory Relat. Fields 108, 299–319 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bramson, M. and Griffeath, D.: Capture problems for coupled random walks (in Random Walks, Brownian Motion and Interacting Particle Systems In: Durrett, R., Kesten, H. (eds). 153–188 (1991)

  6. Bray, A.J., Majumdar, S.N., Schehr, G.: Persistence and first-passage properties in non-equilibrium systems. Adv. Phys. 62(3), 225–361 (2013)

    Article  ADS  Google Scholar 

  7. De Blassie, R.: Exit times from cones in Rn of Brownian motion. Prob. Theory Relat. Fields 74, 1–29 (1987)

    Article  Google Scholar 

  8. De Blassie, R.: Remark on exit times from cones in Rn of Brownian motion. Prob. Theory Relat. Fields 79, 95–97 (1988)

    Article  Google Scholar 

  9. Dembo, A., Mukherjee, S.: Persistence of Gaussian processes: non-summable correlations. Prob. Theory Relat. Fields 169, 1007–1039 (2017)

    Article  MathSciNet  Google Scholar 

  10. Feldheim, N.D., Feldheim, O.N., Nitzan, S. Persistence of Gaussian stationary processes: a spectral perspective, arXiv:1709.00204 [math.PR], (2017)

  11. Grenander, U., Szego, G.: Toeplitz Forms and Their Applications. University of California Press, California (1958)

    Book  Google Scholar 

  12. Kesten, H.: An absorption problem for several Brownian motions. In Seminar on Stochastic Processes, 1991, (Los Angeles, CA, 1991), vol. 29 of Progr. Probab., 59–72. Birkh¨auser, Boston, MA (1992)

  13. Krapivsky, P.L., Redner, S.: Kinetics of a diffusive capture process: lamb besieged by a Pride of Lions. J. Phys. A 29, 5347–5357 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Latala, R. and Matlak, D.: Royen’s proof of the Gaussian correlation inequality. Geometric aspects of functional analysis. Lecture Notes in Mathematics, 2169, 265–275 (2017), Springer, Cham

  15. Li, W.V., Shao, Q.-M.: Capture time of Brownian pursuits. Prob. Theory Relat. Fields 121, 30–48 (2001)

    Article  MathSciNet  Google Scholar 

  16. Li, W.V., Shao, Q.-M.: A normal comparison inequality and its applications. Prob. Theory Relat. Fields 122, 494–508 (2002)

    Article  MathSciNet  Google Scholar 

  17. Li, W.V., Shao, Q.-M.: Lower tail probabilities for Gaussian processes. Ann. Probab. 32(1), 216–241 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Leadbetter, M., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1986)

    MATH  Google Scholar 

  19. Lifshits, M.: Lectures on Gaussian Processes. Springer, New York (2012)

    Book  Google Scholar 

  20. Molchan, G.: Unilateral small deviations of processes related to the fractional Brownian Motion. Stoch. Process. Appl. 118, 2085–2097 (2008)

    Article  MathSciNet  Google Scholar 

  21. Molchan, G.M.: Persistence exponents for Gaussian random fields of fractional Brownian Motion type. J. Stat. Phys. 173, 1587–1597 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ratzkin, J., Treibergs, A.: A capture problem in Brownian motions and eigenvalues of spherical domains. Trans. Am. Math. Soc. 361, 391–405 (2009)

    Article  MathSciNet  Google Scholar 

  23. Royen, T.: A simple proof of the Gaussian correlation conjecture extended to multivariate Gamma distributions. Far East J. Theor. Stat. 48, 139–145 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Talagrand, M.: New Gaussian estimates for enlarged balls. Geom. Funct. Anal. 3, 502–526 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation through the Research Project 17-11-01052. I am very grateful to the reviewers for a careful reading of the manuscript and helpful criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Molchan.

Additional information

Communicated by Satya Majumdar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 4

Following [3], we use the following representation

$$ g_{N} (t) = \sum\limits_{{\left| {n < N/2} \right|}} {\frac{\sin \pi (t - n)}{\pi (t - n)} = 1 + \frac{\sin \pi t}{2\pi i}\oint_{K} {\frac{dz}{(t - z)\sin \pi z}}} $$

where K is the boundary of the square of size N, centered at the origin. On the sides of K that are parallel to the xaxis one has \( \left| {t - {\text{z}}} \right| \ge N/2,\left| {\sin \pi z} \right|^{2} = \cosh \pi N. \)

The analogous estimates for the sides of \( K \) that are parallel to the \( y \) axis are

$$ \left| {t - {\text{z}}} \right| \ge (N - T_{\delta})/2,\left| {\sin \pi z} \right|^{2} = \cosh (2\pi \text{Im} z).$$

Substituting these estimates into the integral, we obtain

$$ \left| {g_{N} (t) - 1} \right| < \upsilon _{0} /(N - T_{\delta } ) + e^{{ - \pi N/2}} ,\left| t \right| \le T_{\delta } /2 < N/2. $$

1.2 Proof of Lemma 6

Let \( X(t) \) be a stationary process with covariance function \( r_{0} (t) \) and continuous spectral density \( f_{0} (\lambda) \). Then the sequence \( \{X(k\theta)\} \) has spectral function

$$ f_{\theta} (\lambda) = \theta^{- 1} f_{0} (\lambda/\theta) + 2\sum\nolimits_{k \ge 1} {\theta^{- 1} f_{0} ((\lambda + 2\pi k})/\theta),\left| \lambda \right| \le \pi. $$
(4.1)

By the assumptions, \( f_{0} (\lambda/\theta) \le f_{0} (0) \) and \( f_{0} (\lambda) \) is majorized by a monotone function \( \tilde{f}_{0} (\lambda) \in L_{1} \).Therefore

$$ \begin{aligned} & \sum\nolimits_{k \ge 1} {f_{0} ((\lambda + 2\pi k})/\theta) \le \tilde{f}_{0} (\pi/\theta) + \sum\nolimits_{k \ge 1} {\tilde{f}_{0} ((2k + 1)\pi/\theta)} \\ & \le 2\pi^{- 1} \theta \int_{\pi/(2\theta)}^{\pi/\theta} {\tilde{f}_{0} (\lambda)d\lambda + (2\pi)^{- 1}} \theta \int_{\pi/\theta} {\tilde{f}_{0} (\lambda)d\lambda} \\ & \le 2\pi^{- 1} \theta \int_{\pi/(2\theta)} {\tilde{f}_{0} (\lambda)d\lambda} \\ \end{aligned} $$

Hence, putting \( \sigma_{\theta}^{2} = \sup_{0 \le \lambda \le \pi} 2\pi f_{\theta} (\lambda) \), we get

$$ \theta \sigma_{\theta}^{2} = \sup_{0 \le \lambda \le \pi} [2\pi f_{0} (\lambda/\theta) + o(\theta)] = 2\pi f_{0} (0) + o(1),\theta \to 0. $$
(4.2)

Consider the \( m \times m \) matrix \( R_{m} = [r_{0} (i\theta - j\theta)]_{i,j = 1 - m} \). Because \( \sigma_{\theta}^{2} = \sup_{0 \le \lambda \le \pi} 2\pi f_{\theta} (\lambda) \), we have the following relation for the quadratic forms \( ({\mathbf{x}} ,R_{m} {\mathbf{x}}) = \int_{- \pi}^{\pi} {\left| {\sum\nolimits_{1}^{m} {x_{k} e^{ik\lambda}}} \right|}^{2} f_{\theta} (\lambda)d\lambda \le \int_{- \pi}^{\pi} {\left| {\sum\nolimits_{1}^{m} {x_{k} e^{ik\lambda}}} \right|}^{2} \sigma_{\theta}^{2}/(2\pi)d\lambda = ({\mathbf{x}},{\mathbf{x}})\sigma_{\theta}^{2}. \)

We will see later that \( R_{m} \) is non-degenerate. Assuming the existence \( R_{m}^{- 1} \), we have

$$ {\text{exp[}} - ({\mathbf{x}} ,R_{m}^{- 1} {\mathbf{x}})/2] \le \exp [- ({\mathbf{x}},{\mathbf{x}})/2\sigma_{\theta}^{2}]. $$

The last one means that for any \( \{u_{i} \} \) we have

$$ P\{X(i\theta) > u_{i},i = 1, \ldots,m\} \le P(\sigma_{\theta} \eta_{i} > u_{i},i = 1, \ldots,m)Q_{m} $$

where \( \{\eta_{i},i = 1, \ldots,m\} \) are i..i.d. standard Gaussian variables, \( Q_{m} = \sqrt {\sigma_{\theta}^{2m}/D_{m}} \) and \( D_{m} = \det R_{m} \).

According to the theory of the Toeplitz forms [11], \( \delta_{m}^{2} = D_{m}/D_{m - 1} \) is the mean-square error of the \( X(0) \) prediction based on \( \{X(i\theta),i = 1, \ldots,m - 1\} \) data. Moreover, \( \delta_{m}^{2} = D_{m}/D_{m - 1} \) decreases and converges to the value \( \delta_{\infty}^{2} = \exp \{(2\pi)^{- 1} \int_{- \pi}^{\pi} {\ln f_{\theta}} (\lambda)d\lambda \} \).

Since \( f_{\theta} (\lambda) \ge \theta^{- 1} f_{0} (\lambda/\theta) \) we have\( D_{m} = \delta_{m}^{2} \cdot \delta_{m - 1}^{2} \cdot \cdots \cdot \delta_{1}^{2} \ge (\delta_{\infty}^{2})^{m} \ge \exp \{m(\theta/\pi)\int_{0}^{\pi/\theta} {\ln f_{0}} (\lambda)d\lambda \} \cdot \theta^{- m} \).Therefore

$$ Q_{m} = \sqrt {\sigma_{\theta}^{2m}/D_{m}} \le (\theta \sigma_{\theta}^{2})^{m/2} \exp \{- m/2 \cdot (\theta/\pi)\int_{0}^{\pi/\theta} {\ln f_{0}} (\lambda)d\lambda \} \cdot $$

This estimate also proves the non-degeneracy of the matrix \( R_{m} \). According to (4.2), \( \theta \sigma_{\theta}^{2} = 2\pi f_{0} (0) + o(1),\theta \to 0 \).

Hence for small \( \theta \) we have \( Q_{m} \le \exp (\tilde{A}_{\theta} m/2) \) with

$$ \tilde{A}_{\theta} = \exp \{(\theta/\pi)\int_{0}^{\pi/\theta} {\ln (2\pi f_{0} (0)/f_{0}} (\lambda))d\lambda + 1 \cdot $$

Obviously, \( \tilde{A}_{\theta} \) can be replaced by a non-decreasing function of \( \theta^{- 1} \), namely

$$ A_{\theta} = \sup_{0 \le \varLambda \le \pi/\theta} < \ln [2\pi f_{0} (0)/f_{0} (\lambda)] >_{\varLambda} + 1,\theta \le \theta_{0} $$

where \( < \psi (\lambda) >_{\varLambda} \) is the mean of \( \psi (\lambda) \) in the interval \( (0,\varLambda) \).□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molchan, G. Leadership Exponent in the Pursuit Problem for 1-D Random Particles. J Stat Phys 181, 952–967 (2020). https://doi.org/10.1007/s10955-020-02614-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02614-z

Keywords

Navigation