Skip to main content
Log in

Radioanalytical methods for sequential analysis of actinide isotopes in activated carbon filter-bed waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, we compare methods for the sequential determination of U and the transuranium elements Np, Pu, Am, and Cm. The chemical yield, the time spent in the analysis, the amount of secondary waste, and the costs of each method are the aspects of interest. Two methods were compared: extraction chromatography (EC) and ion exchange plus extraction chromatography (IE + EC). The chemical yields of (EC) and (IE + EC) were similar for all radionuclides. The (EC) method is the more effective with respect to time of analysis, the amount of secondary waste and costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. IAEA (2009). Determination and use of scaling factors for waste characterization in nuclear power plants. IAEA, Vienna (No. NW-T-1.18)

  2. Das N (2010) Recovery of precious metals through biosorption—a review. Hydrometallurgy 103:180–189. https://doi.org/10.1016/j.hydromet.2010.03.016

    Article  CAS  Google Scholar 

  3. Won SW, Kotte P, Wei W et al (2014) Biosorbents for recovery of precious metals. Bioresour Technol 160:203–212. https://doi.org/10.1016/j.biortech.2014.01.121

    Article  CAS  PubMed  Google Scholar 

  4. Dutta S, Sharma RK (2019) Sustainable magnetically retrievable nanoadsorbents for selective removal of heavy metal ions from different charged wastewaters. Sep Sci Technol 11:371–416. https://doi.org/10.1016/B978-0-12-815730-5.00015-6

    Article  Google Scholar 

  5. Ojovan MI, Lee WE, Kalmykov SN (2014) An introduction to nuclear waste immobilisation. Elsevier, New York

    Google Scholar 

  6. Houck MM, Siegel JA, Houck MM, Siegel JA (2015) Fires and explosions. Fundam Forensic Sci. https://doi.org/10.1016/B978-0-12-800037-3.00018-2

    Article  Google Scholar 

  7. Trojanowicz M, Kołacińska K, Grate JW (2018) A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants. Talanta 183:70–82. https://doi.org/10.1016/j.talanta.2018.02.050

    Article  CAS  PubMed  Google Scholar 

  8. Kołacińska K, Trojanowicz M (2014) Application of flow analysis in determination of selected radionuclides. Talanta 125:131–145. https://doi.org/10.1016/j.talanta.2014.02.057

    Article  CAS  PubMed  Google Scholar 

  9. Fajardo Y, Avivar J, Ferrer L et al (2010) Automation of radiochemical analysis by applying flow techniques to environmental samples. TrAC Trends Anal Chem 29:1399–1408. https://doi.org/10.1016/j.trac.2010.07.018

    Article  CAS  Google Scholar 

  10. Chakravarty R, Chakraborty S, Jadhav S, Dash A (2019) Facile radiochemical separation of clinical-grade 90Y from 90Sr by selective precipitation for targeted radionuclide therapy. Nucl Med Biol 68–69:58–65. https://doi.org/10.1016/j.nucmedbio.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  11. Valdovinos HF, Hernandez R, Graves S et al (2017) Cyclotron production and radiochemical separation of 55Co and 58mCo from 54Fe, 58Ni and 57Fe targets. Appl Radiat Isot 130:90–101. https://doi.org/10.1016/j.apradiso.2017.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horwitz EP, Dietz ML, Chiarizia R et al (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78. https://doi.org/10.1016/0003-2670(95)00144-O

    Article  CAS  Google Scholar 

  13. Korkisch J (2013) Modern methods for the separation of rarer metal ions. Elsevier, New York

    Google Scholar 

  14. Kastner GF, Ferreira AV, Miraglia FG et al (2010) 235U and 238U determination in low and medium activity wastes from Nuclear Power Plants. Rev Bras Ciências Ambient 286:1–5 (in Portuguese)

    Google Scholar 

  15. Osváth S, Vajda N, Molnár Z et al (2010) Determination of 237Np, 93Zr and other long-lived radionuclides in medium and low level radioactive waste samples. J Radioanal Nucl Chem 286:675–680

    Article  Google Scholar 

  16. Shimada A, Haraga T, Hoshi A et al (2010) Analysis of Th, U, Pu, and Am in radioactive metal waste using extraction chromatography. J Radioanal Nucl Chem 286:765–770

    Article  CAS  Google Scholar 

  17. Desideri D, Feduzi L, Meli MA, Roselli C (2011) Sequential determination of Am, Cm, Pu, Np and U by extraction chromatography. Microchem J 97:264–268

    Article  CAS  Google Scholar 

  18. Dulanská S, Remenec B, Mátel L, Durkot E (2012) Rapid determination of 239,240Pu, 238Pu, 241Am and 90Sr in radioactive waste using combined SPE sorbents AnaLig® Pu02, AnaLig® Sr01 and TRU® resin. J Radioanal Nucl Chem 293:81–85. https://doi.org/10.1007/s10967-012-1727-9

    Article  CAS  Google Scholar 

  19. MacSik Z, Groska J, Vajda N et al (2013) Improved radioanalytical method for the simultaneous determination of Th, U, Np, Pu and Am(Cm on a single TRU column by alpha spectrometry and ICP-MS. Radiochim Acta 101:241–251. https://doi.org/10.1524/ract.2013.2025

    Article  CAS  Google Scholar 

  20. Faye SA, Richards JM, Gallardo AM et al (2017) Development of a standardized sequential extraction protocol for simultaneous extraction of multiple actinide elements. J Radioanal Nucl Chem 312:37–45. https://doi.org/10.1007/s10967-017-5188-z

    Article  CAS  Google Scholar 

  21. Luo M, Xing S, Yang Y et al (2018) Sequential analyses of actinides in large-size soil and sediment samples with total sample dissolution. J Environ Radioact 187:73–80. https://doi.org/10.1016/j.jenvrad.2018.01.028

    Article  CAS  PubMed  Google Scholar 

  22. Lowenthal MD (1997) Radioactive-waste classification in the United States: history and current predicaments. Lawrence Livermore National Lab (LLNL), Livermore

    Book  Google Scholar 

  23. Satorious MA (2015) Historical and current issues related to disposal of greater-than-class c low-level radioactive waste. 1–11. Policy Issue. SECY-15-0094

  24. Rodriguez M, Gascón JL, Suárez JA (1997) Study of the interferences in the determination of Pu, Am and Cm in radioactive waste by extraction chromatography. Talanta 45:181–187. https://doi.org/10.1016/S0039-9140(97)00118-5

    Article  CAS  PubMed  Google Scholar 

  25. ASTM (2016) Standard Guide for Determination of plutonium and neptunium in uranium hexafluoride and U-rich matrix by alpha spectrometry 1. 1–4. ASTM C1561 – 10

  26. IAEA (International Atomic Energy Agency) (1991) Intercomparison of radionuclide measurements in marine sediment sample IAEA-368. Marine Environment Laboratory

  27. Ribani M, Bottoli CBG, Collins CH et al (2004) Validation in chromatographic and electrophoretic methods. Quim Nova 27:771–780 (in Portuguese)

    Article  CAS  Google Scholar 

  28. Ribeiro FAdeL, Ferreira MMC, Morano SC et al (2008) Validation worksheet: a new tool to estimate figures of merit in the validation of univariate analytical methods. Quim Nova 31:164–171 (in Portuguese)

    Article  CAS  Google Scholar 

  29. Taddei MHT, Vicente R, Marumo JT et al (2013) Determination of long-lived radionuclides in radioactive wastes from the IEA-R1 nuclear research reactor. J Radioanal Nucl Chem 295:951–957. https://doi.org/10.1007/s10967-012-1865-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Nuclear Energy Commission/Nuclear and Energy Research Institute (IPEN/CNEN-SP) for an institutional grant. The authors also thank: Laboratório de Poços de Caldas – LAPOC/CNEN-MG for allowing its use during some steps of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Goulart de Araujo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geraldo, B., de Araujo, L.G., Vicente, R. et al. Radioanalytical methods for sequential analysis of actinide isotopes in activated carbon filter-bed waste. J Radioanal Nucl Chem 326, 1559–1568 (2020). https://doi.org/10.1007/s10967-020-07435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07435-8

Keywords

Navigation