Skip to main content

Advertisement

Log in

Preparation and physical properties of intrinsic low-k polyarylene ether nitrile with enhanced thermo-stability

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyarylene ether nitrile (PEN) random copolymers were prepared from 6AF, BHPF, and 2, 6-dichlorobenzonitrile according to the nucleophilic aromatic substitution polymerization. The chemical structure of PEN random copolymers was characterized by the FT-IR and 1H-NMR spectrum, respectively. The thermal properties of the PEN random copolymers were investigated by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The resulting PEN copolymers have excellent thermal stability with high glass transition temperature (Tg) ranging from 187℃ to 271℃ and the 5% weight loss temperature (T5%) of PEN copolymers greater than 490℃ in nitrogen atmospheres. Meanwhile, the PEN films have excellent mechanical property, the tensile strength ranges from 55 to 95 MPa. Moreover, the dielectric properties of the PEN random copolymers were investigated by dielectric tests. The dielectric constants (k) and loss tangent (tan δ) of PEN (PEN-6-AF/BHPF100) film is only 2.3 and 0.03 at 1 kHz, respectively. More importantly, the dielectric properties were found to be relatively stable until the Tg, which can be attributed to the existence of BHPF units in the molecular backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen SZ, Pu ZJ, Zheng PL, Liu XB, Jia K (2016) Synthesis and properties of cross-linkable poly(arylene ether nitrile)s containing side propenyl groups. High Perform Polym 28:562–569

    Article  CAS  Google Scholar 

  2. Meng FB, Zhao R, Zhao YQ, Liu XB (2011) Design of thorn-like micro/nanofibers: fabrication and controlled morphology for engineered composite materials applications. J Mater Chem 21:16385–16390

    Article  CAS  Google Scholar 

  3. Tong LF, Pu ZJ, Huang X, Chen ZR, Yang XL, Liu XB (2013) Crosslinking behavior of polyarylene ether nitrile terminated with phthalonitrile (PEN-t -Ph)/1,3,5-Tri-(3,4-dicyanophenoxy) benzene (TPh) system and its enhanced thermal stability. J Appl Polym Sci 130:1363–1368

    Article  CAS  Google Scholar 

  4. You Y, Huang X, Pu ZJ, Jia K, Liu XB (2015) Enhanced crystallinity, mechanical and dielectric properties of biphenyl polyarylene ether nitriles by unidirectional hot-stretching. J Polym Res 22:211

    Article  Google Scholar 

  5. He ZR, Zhang ZY, Bi S (2019) Long-range crystal alignment with polymer additive for organic thin film transistors. J Polym Res 26:173

    Article  Google Scholar 

  6. He ZR, Zhang ZY, Bi S, Asare-Yeboah K, Chen JH (2020) Ultra-low misorientation angle in small-molecule semiconductor/polyethylene oxide blends for organic thin film transistors. J Polym Res 27:75

    Article  CAS  Google Scholar 

  7. Tang HL, Wang P, Zheng PL, Liu XB (2016) Core-shell structured BaTiO3@polymer hybrid nanofiller for poly(arylene ether nitrile) nanocomposites with enhanced dielectric properties and high thermal stability. Compos Sci Technol 123:134–142

    Article  CAS  Google Scholar 

  8. Li C, Liu XB (2007) Mechanical and thermal properties study of glass fiber reinforced polyarylene ether nitriles. Mater Lett 61:2239–2242

    Article  CAS  Google Scholar 

  9. Feng MN, Jin F, Huang X, Jia K, Liu XB (2015) In situ fabrication of MWCNTs reinforce dielectric performances of polyarylene ether nitrile nanocomposite. J Mater Sci 26:1–10

    Google Scholar 

  10. You Y, Han WH, Tu L, Wang YJ, Wei RB, Liu XB (2017) Double-layer core/shell-structured nanoparticles in polyarylene ether nitrile-based nanocomposites as flexible dielectric materials. RSC Adv 7:29306

    Article  CAS  Google Scholar 

  11. Chen RM, Li G (2016) New sulfonated poly(arylene ether sulfone) copolymers containing phenyl side chains as proton exchange membranes. New J Chem 40:3755–3762

    Article  CAS  Google Scholar 

  12. Wang F, Hickner M, Ji Q, Harrison W, Mecham J, Zawodzinski TA, McGrath JE (2001) Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization. Macromol Symp 175:387–396

    Article  CAS  Google Scholar 

  13. Li S, Pang JH, Chen Z, Liu D, Han YT, Wang KQ, Huang S, Jiang Z (2019) A high-performance anion exchange membrane based on poly(arylene ether sulfone) with a high concentration of quaternization units. J Membr Sci 589:117266

    Article  Google Scholar 

  14. Zhan YQ, Yang XL, Guo H, Yang J, Meng FB, Liu XB (2012) Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability. J Mater Chem 22:5602–5608

    Article  CAS  Google Scholar 

  15. Wei JJ, Ju TX, Huang W, Song JL, Yan N, Wang FY, Shen AQ, Li ZP, Zhu L (2019) High dielectric constant dipolar glass polymer based on sulfonylated poly(ether ether ketone). Polymer 178:121688

    Article  Google Scholar 

  16. Zhuang YB, Seong JG, Lee YM (2019) Polyimides containing aliphatic/alicyclic segments in the main chains. Prog Polym Sci 92:35–88

    Article  CAS  Google Scholar 

  17. Wei ZM, Lian YF, Wang XJ, Long SR, Yang J (2020) A novel high-durability oxidized poly (arylene sulfide sulfone) electrospun nanofibrous membrane for direct water-oil separation. Sep Purif Technol 234:116012

    Article  Google Scholar 

  18. Zhao YT, Wang X, Ren YW, Pei DH (2018) Mesh-Embedded Polysulfone/Sulfonated Polysulfone Supported Thin Film Composite Membranes for Forward Osmosis. ACS Appl Mater Interfaces 10(3):2918–2928

    Article  CAS  Google Scholar 

  19. Tashvigh AA, Luo L, Chung TS, Weber M, Maletzko C (2018) A novel ionically cross-linked sulfonated polyphenylsulfone (sPPSU) membrane for organic solvent nanofiltration (OSN). J Membr Sci 545:221–228

    Article  Google Scholar 

  20. Ates S, Dizaman C, Aydogan B, Kiskan B, Torun L, Yagci Y (2011) Synthesis, characterization and thermally activated curing of polysulfones with benzoxazine end groups. Polymer 52:1504–1509

    Article  CAS  Google Scholar 

  21. Tao LM, Yang HX, Liu JG, Fan L, Yang SY (2010) Synthesis of fluorinated polybenzoxazoles with low dielectric constants. J Polym Sci Part A Polym Chem 48:4668–4680

    Article  CAS  Google Scholar 

  22. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: Syntheses, physical properties and applications. Prog Polym Sci 37:907–974

    Article  CAS  Google Scholar 

  23. He FK, Gao Y, Jin KK, Wang JJ, Sun J, Fang Q (2016) Conversion of a Biorenewable Plant Oil (Anethole) to a New Fluoropolymer with Both Low Dielectric Constant and Low Water Uptake. ACS Sustainable Chem Eng 4(8):4451–4456

    Article  CAS  Google Scholar 

  24. Liu YW, Qian C, Qu LJ, Wu YN, Zhang Y, Wu XH, Zou B, Chen WX, Chen ZQ, Chi ZG, Liu SW, Chen XD, Xu JR (2015) A Bulk Dielectric Polymer Film with Intrinsic Ultralow Dielectric Constant and Outstanding Comprehensive Properties. Chem Mater 27(19):6543–6549

    Article  CAS  Google Scholar 

  25. Yuan C, Jin KK, Li K, Diao S, Tong JW, Fang Q (2013) Non-Porous Low-k Dielectric Films Based on a New Structural Amorphous Fluoropolymer. Adv Mater 25:4875–4878

    Article  CAS  Google Scholar 

  26. Luo YJ, Jin KK, He CQ, Wang JJ, Sun J, He FK, Zhou JF, Wang YQ, Fang Q (2016) An Intrinsically Microporous Network Polymer with Good Dielectric Properties at High Frequency. Macromolecules 49(19):7314–7321

    Article  CAS  Google Scholar 

  27. Tang HL, Huang X, Yang XL, Yang J, Zhao R, Liu XB (2012) An effective approach to enhance temperature independence of dielectric properties for polyarylene ether nitrile films. Mater Lett 75:218–220

    Article  CAS  Google Scholar 

  28. Hareison WL, Wang F, Mecham JB, Bhanu VA, Hill M, Kim YS, McGrath JE (2003) Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. J Polym Sci Part A Polym Chem 41:2264–2276

    Article  Google Scholar 

  29. Feng MN, Huang X, Tang HL, Liu XB (2014) Effects of surface modification on interfacial and rheological properties of CCTO/PEN composite films. Colloids Surf A 441:556–564

    Article  CAS  Google Scholar 

  30. Li C, Tang AB, Zou YB, Liu XB (2005) Preparation and dielectric properties of polyarylene ether nitriles/TiO2 nanocomposite film. Mater Lett 59:59–63

    Article  CAS  Google Scholar 

  31. Pu ZJ, Chen L, Long Y, Tong LF, Huang X, Liu XB (2013) Influence of composition on the proton conductivity and mechanical properties of sulfonated poly(aryl ether nitrile) copolymers for proton exchange membranes. J Polym Res 20:281

    Article  Google Scholar 

  32. Jia K, Xie JN, He XH, Zhang DW, Hou BS, Li XS, Zhou X, Hong Y, Liu XB (2020) Polymeric micro-reactors mediated synthesis and assembly of Ag nanoparticles into cube-like superparticles for SERS application. Chem Eng J 395:125123

    Article  CAS  Google Scholar 

  33. He XH, Ji Y, Xie JN, Hu WB, Jia K, Liu XB (2020) Emulsion solvent evaporation induced self-assembly of polyarylene ether nitrile block copolymers into functional metal coordination polymeric microspheres. Polymer 186:122024

    Article  CAS  Google Scholar 

  34. Hu WB, He XH, Bai Y, Zheng L, Hu YG, Wang P, Liu XB, Jia K (2020) Synthesis and self-assembly of polyethersulfone-based amphiphilic block copolymers as microparticles for suspension immunosensors. Polym Chem 11:1496–1503

    Article  CAS  Google Scholar 

  35. Huang MY, Shen ZY, Wang Y, Li H, Luo TF, Lei Y (2019) Thermo-mechanical properties and morphology of epoxy resins with co-poly (phthalazinone ether nitrile). J Polym Res 26:96

    Article  Google Scholar 

  36. Zhan YQ, Zhang JM, Zhao SM, He SJ (2019) Thermally stable and dielectric nanocomposite based on poly(arylene ether nitrile) and BaTiO3 functionalized by modified mussel-inspired route. J Polym Res 26:77

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank for the Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities (2018JXY04), Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province (2019CL04) and Major Project of Education Department in Sichuan (18ZA0346), Key science and technology planning project of Zigong (2019YYJC04).

Author information

Authors and Affiliations

Authors

Contributions

Qi Wang and Zejun Pu contributed equally to this work, and they are the co-first author. Besides, all the authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Zejun Pu or Jiachun Zhong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Pu, Z., Zheng, X. et al. Preparation and physical properties of intrinsic low-k polyarylene ether nitrile with enhanced thermo-stability. J Polym Res 27, 328 (2020). https://doi.org/10.1007/s10965-020-02311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02311-1

Keywords

Navigation