Skip to main content
Log in

The Casimir Effect in a Weakly Interacting Bose Gas

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

By means of the quantum field theory, the Casimir effect in an interacting Bose gas confined between two parallel plates is considered in the one-loop approximation. The Casimir effect due to the quantum fluctuations and thermal fluctuations is calculated associated with the periodic boundary condition applied at the plates. Our results show that the Casimir force is short-ranged in every ranges of the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948)

    Article  ADS  Google Scholar 

  2. H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    Google Scholar 

  3. M.J. Sparnaay, Measurements of attractive forces between flat plates. Physica 24, 751 (1958)

    Article  ADS  Google Scholar 

  4. M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353, 1 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. J.F. Babb, Adva. Atom. Mol. Opt. Phys. 59, 1 (2010)

    Article  ADS  Google Scholar 

  6. B.S. Kay, Phys. Rev. D 20, 3052 (1979)

    Article  ADS  Google Scholar 

  7. V.M. Mostepanenko, N.N. Trunov, Usp. Fiz. Nauk 156, 385–426 (1988)

    Article  Google Scholar 

  8. T.H. Phat, N. Van Thu, Int. J. Mod. Phys. A 29, 1450078 (2014)

    Article  ADS  Google Scholar 

  9. M. Fukuto, Y.F. Yano, P.S. Pershan, Phys. Rev. Lett. 94, 135702 (2005)

    Article  ADS  Google Scholar 

  10. A. Ganshin, S. Scheidemantel, R. Garcia, M.H.W. Chan, Phys. Rev. Lett. 97, 075301 (2006)

    Article  ADS  Google Scholar 

  11. D.M. Harber, J.M. Obrecht, J.M. McGuirk, E.A. Cornell, Phys. Rev. A 72, 033610 (2005)

    Article  ADS  Google Scholar 

  12. J.M. Obrecht, R.J. Wild, M. Antezza, L.P. Pitaevskii, S. Stringari, E.A. Cornell, Phys. Rev. Lett. 98, 063201 (2007)

    Article  ADS  Google Scholar 

  13. G.L. Klimchitskaya, V.M. Mostepanenko, J. Phys. A 41, 312002 (2008)

    Article  ADS  Google Scholar 

  14. N.V. Thu, Phys. Lett. A 382, 1078–1084 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Van Thu, P.T. Song, Physica A 540, 123018 (2020)

    Article  MathSciNet  Google Scholar 

  16. P.A. Martin, V.A. Zagrebnov, Europhys. Lett. 73, 15 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.M. Faruk, S. Biswas, J. Stat. Mech. 2018, 043401 (2018)

    Article  Google Scholar 

  18. E. Aydiner, Annalen der Physik 532, 2000178 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Schiefele, C. Henkel, J. Phys. A 42, 045401 (2009)

    Article  MathSciNet  Google Scholar 

  20. S. Biswas, J.K. Bhattacharjee, D. Majumder, K. Saha, N. Chakravarty, J. Phys. B 43, 085305 (2010)

    Article  ADS  Google Scholar 

  21. S. Biswas, J. Phys. A 40, 9969 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. D.C. Roberts, Y. Pomeau, Phys. Rev. Lett. 95, 145303 (2005)

    Article  ADS  Google Scholar 

  23. N. Van Thu, L.T. Theu, D.T. Hai, J. Exp. Theor. Phys. 130, 321 (2020)

    Article  ADS  Google Scholar 

  24. N.V. Thu, L.T. Theu, J. Stat. Phys. 168, 1–10 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. N.V. Thu, L.T. Theu, Int. J. Mod. Phys. B 33, 1950114 (2019)

    Article  ADS  Google Scholar 

  26. S. Sachdev, Quantum Phase Transition (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  27. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  28. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  29. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  Google Scholar 

  30. S. Floerchinger, C. Wetterich, Phys. Rev. A 79, 013601 (2009)

    Article  ADS  Google Scholar 

  31. A. Schmitt, Dense Matter in Compact Stars (Springer, Berlin, 2010)

    Book  Google Scholar 

  32. N.V. Thu, T.H. Phat, P.T. Song, J. Low Temp. Phys. 186, 127 (2017)

    Article  ADS  Google Scholar 

  33. A. A. Saharian, arXiv:0708.1187

  34. A. Edery, J. Stat. Mech. 2006, P06007 (2006)

    Article  Google Scholar 

  35. Bert Van Schaeybroeck, Physica A 392, 3806 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  36. G. Baym, J.-P. Blaizot, M. Holzmann, F. Lalu, D. Vautherin, Phys. Rev. Lett. 83, 1703 (1999)

    Article  ADS  Google Scholar 

  37. N. Van Thu, P.T. Song, in preparation

  38. M. Napiorkowski, J. Piasecki, Phys. Rev. E 84, 061105 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Ministry of Education and Training of Vietnam under Grant No. B2018-TTB-12 - CTrVL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Thu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, P.T., Van Thu, N. The Casimir Effect in a Weakly Interacting Bose Gas. J Low Temp Phys 202, 160–174 (2021). https://doi.org/10.1007/s10909-020-02535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02535-x

Keywords

Navigation