Skip to main content
Log in

How is information transmitted in a nerve?

  • Review
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In the last 15 years, a debate has emerged about the validity of the famous Hodgkin-Huxley model for nerve impulse. Mechanical models have been proposed. This note reviews the experimental properties of the nerve impulse and discusses the proposed alternatives. The experimental data, which rule out some of the alternative suggestions, show that while the Hodgkin-Huxley model may not be complete, it nevertheless includes essential features that should not be overlooked in the attempts made to improve, or supersede, it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Von Helmholtz, H.: Messungen über den zeitlichen Verlauf der Zuckung animalischer Muskeln und die Fortpflanzungsgeschwindigkeit der Reizung in den Nerven. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin 276–364 (1850)

  2. Von Helmholtz, H.: Note sur la vitesse de propagation de l’agent nerveux dans les nerfs rachidiens. C. R. Acad. Sci. (Paris) XXX, 204–-206 (1850)

    Google Scholar 

  3. Von Helmholtz, H.: Deuxième note sur la vitesse de propagation de l’agent nerveux. C. R. Acad. Sci. (Paris) XXXIII, 262–-265 (1851). available at: https://www.academie-sciences.fr/archivage_site/activite/hds/textes/tsf_Debru1.pdf

    Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  5. Vandenberg, J.I., Waxman, S.G.: Hodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strong. J. Physiol. 590.11, 2569–2570 (2012)

    Google Scholar 

  6. Schwiening, C.J.: A brief historical perspective: Hodgkin and Huxley. J. Physiol. 590.11, 2571-–2575 (2012)

    Google Scholar 

  7. Heimburg, T., Jackson, A.D.: On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. U.S.A. 102, 9790–9795 (2005)

    ADS  Google Scholar 

  8. Holland, L., de Regt, H.W., Drukarch, B.: Thinking about the nerve impulse: The prospects for the development of a comprehensive account of nerve impulse propagation. Front. Cell. Neurosci. 13, art. 208 (2019)

    Google Scholar 

  9. Seyfarth, E.-A.: Julius Bernstein (1839–1917): pioneer neurobiologist and biophysicist. Biol. Cybern. 94, 2–8 (2006)

    MATH  Google Scholar 

  10. Bernstein, J.: Ueber den zeitlichen Verlauf der negativen Schwankung des Nervenstroms. Pflügers Archiv. 1, 173–207 (1868)

    Google Scholar 

  11. Bernstein, J.: Untersuchungen zur Thermodynamik der bioelectrischen Ströme. Pflügers Archiv. 92, 521–562 (1902)

    Google Scholar 

  12. Overton, E.: Beiträge zur allgemeinen Muskel- und Nervenphysiologie. II Ueber die Unentbehrlichkeit von Natrium- (oder Lithium-)Ionen fü,r den Contractionsact des Muskels. Pflügers 92, 346–386 (1902)

    Google Scholar 

  13. Hodgkin, A.L.: Chance and design in electrophysiology: an informal account of certain experiments on nerve carried out between 1934 and 1952. J. Phys. 263, 1–21 (1976)

    Google Scholar 

  14. Hodgkin, A.L.: Evidence for electrical transmission in nerve. Part I. J. Phys. 90, 183–210 (1937)

    Google Scholar 

  15. Hodgkin, A.L.: The subthreshold potentials in a crustacean nerve fibre. Proc. Roy. Soc. London B 126, 87–121 (1938)

    ADS  Google Scholar 

  16. Cole, K.S., Curtis, H.J.: Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649–670 (1939)

    Google Scholar 

  17. Hodgkin, A.L.: The relation between conduction velocity and the electrical resistance outside a nerve fibre. J. Phys. 94, 560–570 (1939)

    Google Scholar 

  18. Curtis, H.J., Cole, K.S.: Membrane resting and action potential from the squid giant axon. J. Cell. Comp. Physiol. 19, 135–144 (1942)

    Google Scholar 

  19. Hodgkin, A.L., Huxley, A.F.: Resting and action potentials in single nerve fibres. J. Physiol. 104, 176–195 (1945)

    Google Scholar 

  20. Huxley, A.F.: Hodgkin and the action potential. J. Physiol. 538, 2 (2002)

    Google Scholar 

  21. Hodgkin, A.L., Katz, B.: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108, 37–77 (1949)

    Google Scholar 

  22. Hodgkin, A.L., Keynes, R.D.: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. 128, 28–60 (1955)

    Google Scholar 

  23. Hodgkin, A.L., Keynes, R.D.: The potassium permeability of a giant nerve fibre. J. Physiol. 128, 61–88 (1955)

    Google Scholar 

  24. Hodgkin, A.L., Katz, B.: The effect of temperature on the electrical activity of the giant axon of the squid. J. Physiol. 109, 240–249 (1949)

    Google Scholar 

  25. Feng, T.P.: The heat production of nerve. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 38, 73–132 (1936)

    Google Scholar 

  26. Howarth, J.V., Keynes, R.D., Ritchie, J.M.: The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres. J. Physiol. 194, 745–793 (1968)

    Google Scholar 

  27. Howarth, J.V., Keynes, R.D., Ritchie, J.M., vin Muralt, A.: The heat production associated with the passage of a single impulse in olfactory nerve fibres. J. Physiol. 249, 349–368 (1975)

    Google Scholar 

  28. de Lichtervelde, A.C.L., de Souza, J.P., Bazant, M.Z.: Heat of nervous conduction: a thermodynamic framework. Phys. Rev. E 101, 022406 (2020)

  29. Tasaki, I., Watanabe, A., Sandlin, R., Carnay, L.: Changes in fluorescence, turbidity and birefringence associated with nerve excitation. Proc. Natl. Acad. Sci. U.S.A. 61, 883–888 (1968)

    ADS  Google Scholar 

  30. Hill, B.C., Schubert, E.D., Nokes, M.A., Michelson, R.P.: Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential. Science 196, 426–428 (1977)

    ADS  Google Scholar 

  31. Iwasa, K., Tasaki, I.: Mechanical changes in squid giant axons associated with production of action potential. Biochem. Biophys. Res. Commun 95, 1328–1331 (1980)

    Google Scholar 

  32. Iwasa, K., Tasaki, I., Gibbons, R.C.: Swelling of nerve fibers associated with action potentials. Science 210, 338–339 (1980)

    ADS  Google Scholar 

  33. Tasaki, I., Byrne, P.M.: Discontinuous volume transitions in ionic gels and their possible involvement in the nerve excitation process. Biopolymers 32, 1019–1023 (1992)

    Google Scholar 

  34. Tasaki, I.: Rapid structural changes in nerve fibers and cells associated with their excitation processes. Jap. J. Physiol. 49, 125–138 (1999)

    Google Scholar 

  35. Tasaki, I.: Evidence for phase transition in nerve fibers, cells and synapses. Ferroelectrics 220, 305–316 (1999)

    Google Scholar 

  36. Jensen, M.Ø., Jogini, V., Borhani, D.W., Leffler, A.E., Dror, R.O., Shaw, D.E.: Mechanism of voltage gating in potassium channels. Science 336 (6078), 229–233 (2012)

    ADS  Google Scholar 

  37. Catterall, W.A.: From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26, 13–25 (2000)

    Google Scholar 

  38. Dauxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  39. Gonzalez-Perez, A., Mosgaard, L.D., Budvytyte, R., Nissen, S., Heimburg, T.: Penetration of action potentials during collision in the median and lateral giant axons of invertebrates. Phys. Rev. X 4, 031047 (2014)

    Google Scholar 

  40. Tasaki, I.: Collision of two nerve impulses in the nerve fibre. Biochim. Biophys. Acta 3, 494–-497 (1949)

    Google Scholar 

  41. Aslanidi, O.V., Mornev, O.A.: Can colliding nerve pulses be reflected?. JETP Lett. 65, 579–-585 (1997). (Pis’ma Zh. Éksp. Teor. Fiz. 65, No. 7, 553–558 10 April 1997)

    ADS  Google Scholar 

  42. Xu K., Zhong, G., Zhuang, X.: Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013)

    ADS  Google Scholar 

  43. Kotthaus, J.P.: A Mechatronics view at nerve conduction. arXiv:1909.06313 [physics.bio-ph] (2019)

  44. Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)

    ADS  Google Scholar 

  45. Neher, E., Sakmann, B.: Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976)

    ADS  Google Scholar 

  46. El Hady, A., Machta, B.B.: Mechanical surface waves accompany action potential propagation. Nat. Commun. 6, 6697 (2015)

    ADS  Google Scholar 

  47. Engelbrecht, J., Peets, T., Tamm, K.: Electromechanical coupling of waves in nerve fibres. Biomech. Model Mechanobiol. 17, 1771–-1783 (2018). arXiv:1802.07014v2

    Google Scholar 

  48. FitzHugh, R.: Impulses and physiological states in theoretical models of the nerve membrane. Biophys. J. 1, 445–466 (1961)

    ADS  Google Scholar 

  49. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. In: Proceedings of the IRE, pp 2061–2070 (1962)

  50. Krichen, S., Sharma, P.: Flexoelectricity: a perspective on an unusual electromechanical coupling. J. Appl. Mech. 83, 030801–1-6 (2016)

    Google Scholar 

  51. Chen, H., Garcia-Gonzalez, D., Jérusalem, A.: Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation. Phys. Rev. E. 99, 032406 (2019)

    ADS  Google Scholar 

  52. Franks, N.P., Lieb, W.R.: Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614 (1994)

    ADS  Google Scholar 

  53. Yakamura, T., Bertaccini, E., Trudell, J.R., Harris, R.A.: Anesthetics and ion channels: Molecular models and sites of action. Annu. Rev. Pharmacol. Toxicol. 43, 23–51 (2001)

    Google Scholar 

  54. El-Din, T.M.G., Lanaeus, M.J., Zheng, N. , Catterall, W.A.: Fenestrations control resting-state block of a voltage- gated sodium channel. Proc. Natl. Acad. Sci. U.S.A. 51, 13111–13116 (2018)

    Google Scholar 

  55. Pavel, M.A., Petersen, E.N., Wang, H., Lerner, R.A., Hansen, S.B.: Studies on the mechanism of general anesthesia. Proc. Natl. Acad. Sci. U.S.A. 117, 13757–13766 (2020)

    Google Scholar 

  56. Heimburg, T.: The important consequences of the reversible heat production in nerves and the adiabaticity of the action potential. arXiv:2002.06031v2 [physics.bio-ph] (2020)

  57. Beyder, A., Rae, J.L., Bernard, C., Strege, P.R., Sachs, F., Farrugia, G.: Mechanosensitivity of Na v 1.5, a voltage-sensitive sodium channel. J. Physiol. 588, 4969–4985 (2010)

    Google Scholar 

  58. FitzHugh, R.: Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys. J. 2, 11–21 (1962)

    ADS  MathSciNet  Google Scholar 

  59. Ori, H., Marder, E., Marom, S.: Cellular function given parametric variation in the Hodgkin and Huxley model of excitability. Proc. Natl. Acad. Sci. U.S.A. 115, E8211–E8218 (2018)

    Google Scholar 

  60. Strassberg, A.E., DeFelice, L.J.: Limitations of the Hodgkin-Huxley formalism: Effects of single channel kinetics on transmembrane voltage dynamics. Neural Comput. 5, 843–855 (1993)

    Google Scholar 

  61. Meunier, C., Segev, I.: Playing the Devil’s advocate: is the Hodgkin–Huxley model useful? Trends Neurosci. 25, 558–563 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Peyrard.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyrard, M. How is information transmitted in a nerve?. J Biol Phys 46, 327–341 (2020). https://doi.org/10.1007/s10867-020-09557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-020-09557-2

Keywords

Navigation