Skip to main content
Log in

Optical and Nanomechanical Properties of Ga2Se3 Single Crystals and Thin Films

  • Advanced Coating and Thin Film Materials for Energy, Aerospace and Biological Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The optical and nanomechanical properties of Ga2Se3 single crystals and thin films were investigated using reflection, transmission, and nanoindentation measurements. The reflection spectrum recorded in the 525- to 1100-nm range was analyzed to get the band gap energy of the crystal structure, and derivative analysis of the spectrum resulted in band gap energy of 1.92 eV which was attributed to indirect transition. The band gap energy of thermally evaporated Ga2Se3 thin film was determined from the analysis of the transmittance spectrum. The absorption coefficient analysis presented the direct band gap energy as 2.60 eV. The refractive index was investigated in the transparent region using the Wemple–DiDomenico single-oscillator model. Nanoindentation measurements were carried out on the crystal and thin film structures of Ga2Se3. Nanohardness and elastic modulus of the Ga2Se3 single crystals and thin films were calculated following the Oliver–Pharr analysis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Asenjo, C. Guillen, A.M. Chaparro, E. Saucedo, V. Bermudez, D. Lincot, J. Herrero, and M.T. Gutierrez, J. Phys. Chem. Solids 71, 1629 (2010).

    Article  Google Scholar 

  2. N. Balakrishnan, E.D. Steer, E.F. Smith, Z.R. Kudrynskyi, Z.D. Kovalyuk, L. Eaves, A. Patane, and P.H. Beton, 2D Mater. 5, 035026 (2018).

    Article  Google Scholar 

  3. M.J. Zhang, X.M. Jiang, L.J. Zhou, and G.C. Guo, J. Mater. Chem. C 1, 4754 (2013).

    Article  Google Scholar 

  4. B. Asenjo, C. Guillen, A.M. Chaparro, E. Saucedo, V. Bermudez, D. Lincot, J. Herrero, and M.T. Gutierrez, J. Phys. Chem. Sol. 71, 1629 (2010).

    Article  Google Scholar 

  5. S.R. Alharbi and A.F. Qasrawi, Mater. Sci. Semicon. Proc. 83, 102 (2018).

    Article  Google Scholar 

  6. H.K. Khanfar, A.F. Qasrawi, Y.A. Zakarneh, and N.M. Gasanly, IEEE Sens. J. 17, 4429 (2017).

    Article  Google Scholar 

  7. G. Guillonneau, G. Kermouche, J. Teisseire, E. Barthel, S. Bec, and J.L. Loubet, Philos. Mag. 95, 1999 (2015).

    Article  Google Scholar 

  8. M. Bouroushian, Electrochemistry of Metal Chalcogenides (Berlin: Springer, 2010).

    Book  Google Scholar 

  9. A.E. Bekheet, J. Electron. Mater. 37, 540 (2008).

    Article  Google Scholar 

  10. T. Yoshida, T. Nagatake, M. Kobayashi, and A. Yoshikawa, J. Cryst. Growth 159, 750 (1996).

    Article  Google Scholar 

  11. C.S. Yoon, K.H. Park, D.T. Kim, T.Y. Park, M.S. Jin, S.K. Oh, and W.T. Kim, J. Phys. Chem. Sol. 62, 1131 (2001).

    Article  Google Scholar 

  12. M.A. Afifi, A.E. Bekheet, H.T. El-Shair, and I.T. Zedan, Phys. B 325, 308 (2003).

    Article  Google Scholar 

  13. X.L. Liu and C.K. Tan, AIP Adv. 9, 125204 (2019).

    Article  Google Scholar 

  14. M. Isik, I. Guler, and N.M. Gasanly, Opt. Mater. 95, 109228 (2019).

    Article  Google Scholar 

  15. I. Guler, M. Isik, N.M. Gasanly, L.G. Gasanova, and R.F. Babayeva, J. Electron. Mater. 48, 2418 (2019).

    Article  Google Scholar 

  16. A.V. Budanov, Y.N. Vlasov, G.I. Kotov, E.V. Rudnev, and E.A. Mikhailyuk, Chalcogenide Lett. 15, 425 (2018).

    Google Scholar 

  17. Y.I. Kim, K.J. Yang, S.Y. Kim, J.K. Kang, J. Kim, W. Jo, H. Yoo, J. Kim, and D.H. Kim, J. Ind. Eng. Chem. 76, 437 (2019).

    Article  Google Scholar 

  18. X. Peng, M. Zhao, D.M. Zhuang, R.J. Sun, L. Zhang, Y.W. Wei, X.Y. Lv, Y.X. Wu, and G.A. Ren, Vacuum 152, 184 (2018).

    Article  Google Scholar 

  19. M. Ganjian, K. Modaresifar, H.Z. Zhang, P.L. Hagedoorn, L.E. Fratila-Apachitei, and A.A. Zadpoor, Sci. Rep. 9, 18815 (2019).

    Article  Google Scholar 

  20. M.J.N. Isfahani, F. Payami, M.A. Asadabad, and A.A. Shokri, J. Alloy. Compd. 797, 1348 (2019).

    Article  Google Scholar 

  21. Y. Hirata, K. Kitamura, T. Ishikawa, and J. Choi, J. Appl. Phys. 125, 065306 (2019).

    Article  Google Scholar 

  22. S.R. Jian, H.G. Chen, G.J. Chen, J.S.C. Jang, and J.Y. Juang, Curr. Appl. Phys. 12, 849 (2012).

    Article  Google Scholar 

  23. B.P. Sahu, A. Dutta, and R. Mitra, Metall. Mater. Trans. A 50, 5656 (2019).

    Article  Google Scholar 

  24. D.I. Bletskan, V.N. Kabatsii, and M. Kranjcec, Inorg. Mater. 46, 1290 (2010).

    Article  Google Scholar 

  25. G. Huang, N.M. Abdul-Jabbar, and B.D. Wirth, J. Phys. Condens. Matter 25, 225503 (2013).

    Article  Google Scholar 

  26. J.I. Pankove, Optical Processes in Semiconductors (New Jersey: Prentice Hall, 1971).

    Google Scholar 

  27. D. Vankhade and T.K. Chaudhuri, Opt. Mater. 98, 109491 (2019).

    Article  Google Scholar 

  28. X.D. Li and B. Bhushan, Mater. Charact. 48, 11 (2002).

    Article  Google Scholar 

  29. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  30. S.R. Jian, S.A. Ku, C.W. Luo, and J.Y. Juang, Nanoscale Res. Lett. 7, 403 (2012).

    Article  Google Scholar 

  31. D.H. Mosca, N. Mattaso, C.M. Lepienski, W. Veiga, I. Mazzaro, V.H. Etgens, and M. Eddrief, J. Appl. Phys. 91, 140 (2002).

    Article  Google Scholar 

  32. H.D. Lai, S.R. Jian, L.T.C. Tuyen, P.H. Le, C.W. Luo, and J.Y. Juang, Micromachines 9, 518 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Isik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, M., Emir, C., Gullu, H.H. et al. Optical and Nanomechanical Properties of Ga2Se3 Single Crystals and Thin Films. JOM 73, 558–565 (2021). https://doi.org/10.1007/s11837-020-04379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04379-y

Navigation