Skip to main content
Log in

Copper Surfaces with Bimodal Nanoporosity by Microstructural Length Scale Controlled Dealloying of a Hypereutectic Al-Cu Alloy

  • Surface Engineering: Applications for Advanced Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper (Cu) surfaces with bimodal nanoporosity can be used for a variety of applications. This research shows that bimodal nanoporous Cu surfaces can be fabricated by dealloying of an as-cast hypereutectic alloy Al75Cu25 (at.%) alloy, which solidifies as pre-eutectic Al2Cu (micrometre-scaled) and eutectic lamella of α-Al/Al2Cu (nanoscaled). The bimodal nanoporous Cu surface is a result of a microstructural length scale controlled dealloying process: In the beginning, the micrometre-scaled Al2Cu acts as a cathode enabling the preferential dissolution of α-Al (anode) for larger pores to form. Afterwards, the nanosize effect of α-Al overrides the intrinsic difference in electrochemical potential allowing for subsequent simultaneous dealloying leading to finer pores. The assessment of the in situ Synchrotron XRD data of the formation of bimodal nanoporous Cu surfaces revealed a two-stage kinetic process, closely related to the formation of bimodal pores during the microstructural length scale controlled dealloying process. The underlying rationales and implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Stratmann and M. Rohwerder, Nature 410, 421 (2001).

    Article  Google Scholar 

  2. J. Fu, Z. Deng, and E. Detsi, JOM 71, 1581 (2019).

    Article  Google Scholar 

  3. F. Kertis, J. Snyder, L. Govada, S. Khurshid, N. Chayen, and J. Erlebacher, JOM 62, 50 (2010).

    Article  Google Scholar 

  4. W. Liu, P. Cheng, S. Zhang, and S. Shi, Metall. Mater. Trans. A 51, 2236 (2020).

    Google Scholar 

  5. T. Song, M. Yan, and M. Qian, J. Porous Mater. 22, 713 (2015).

    Article  Google Scholar 

  6. X. Wu, G. He, and Y. Ding, Chemsuschem 13, 3376 (2020).

    Article  Google Scholar 

  7. S.Y. Han, J.A. Lewis, P.P. Shetty, J. Tippens, D. Yeh, T.S. Marchese, and M.T. McDowell, Chem. Mater. 32, 2461 (2020).

    Article  Google Scholar 

  8. Y. Gao and Y. Ding, Chem. Eur. (2020). https://doi.org/10.1002/chem.202000471.

    Article  Google Scholar 

  9. L.-M. Luo, W. Zhan, R.-H. Zhang, Q.-Y. Hu, Y.-F. Guo, and X.-W. Zhou, J. Catal. 381, 316 (2020).

    Article  Google Scholar 

  10. Z. Yuan, X. Wang, J. Bin, C. Peng, S. Xing, M. Wang, J. Xiao, J. Zeng, Y. Xie, X. Xiao, X. Fu, H. Gong, and D. Zhao, Appl. Surf. Sci. 285, 205 (2013).

    Article  Google Scholar 

  11. P. Zhu, Z. Wu, and Y. Zhao, Scr. Mater. 172, 119 (2019).

    Article  Google Scholar 

  12. Z. Qi and J. Weissmüller, ACS Nano 7, 5948 (2013).

    Article  Google Scholar 

  13. T. Song, M. Yan, and M. Qian, Corros. Sci. 134, 78 (2018).

    Article  Google Scholar 

  14. Y. Zhang, X. Sun, N. Nomura, and T. Fujita, Small 15, 1805432 (2019).

    Article  Google Scholar 

  15. T. Song, M. Yan, N.A.S. Webster, M.J. Styles, J.A. Kimpton, and M. Qian, Acta Mater. 168, 376 (2019).

    Article  Google Scholar 

  16. T.B. Massalski, Bull. Alloy Phase Diagr. 1, 27 (1980).

    Article  Google Scholar 

  17. L. León-Reina, M. García-Maté, G. Álvarez-Pinazo, I. Santacruz, O. Vallcorba, A.G. De la Torre, and M.A.G. Aranda, J. Appl. Crystallogr. 49, 722 (2016).

    Article  Google Scholar 

  18. K.S. Wallwork, B.J. Kennedy, and D. Wang, AIP Conf. Proc. 879, 879 (2007).

    Article  Google Scholar 

  19. R.B. Von Dreele, Powder Diffraction: Theory and Practice (London: The Royal Society of Chemistry, 2008), pp. 266–281.

    Book  Google Scholar 

  20. A. Dursun, D.V. Pugh, and S.G. Corcoran, Electrochem. Solid State Lett. 6, B32 (2003).

    Article  Google Scholar 

  21. Q. Zhang and Z. Zhang, Phys. Chem. Chem. Phys. 12, 1453 (2010).

    Article  Google Scholar 

  22. O.K. Abiola, N.C. Oforka, and S.S. Angaye, Mater. Lett. 58, 3461 (2004).

    Article  Google Scholar 

  23. P. Kwolek, B. Kościelniak, and M. Wytrwal-Sarna, Materials 13, 1946 (2020).

    Article  Google Scholar 

  24. T. Song, M. Yan, Z. Shi, A. Atrens, and M. Qian, Electrochim. Acta 164, 288 (2015).

    Article  Google Scholar 

  25. D.F. Swinehart, J. Chem. Edu. 39, 333 (1962).

    Article  Google Scholar 

  26. P. Bandyopadhyay and C.U. Segre, http://www.csrri.iit.edu/mucal.html. Accessed 14 July 2020.

  27. T. Song, Y.L. Gao, Z.H. Zhang, and Q.J. Zhai, Corros. Sci. 68, 256 (2013).

    Article  Google Scholar 

  28. X. Wang, Z. Qi, C. Zhao, W. Wang, and Z. Zhang, J. Phys. Chem. C 113, 13139 (2009).

    Article  Google Scholar 

  29. Z. Zhang, Y. Wang, Z. Qi, J. Lin, and X. Bian, J. Phys. Chem. C 113, 1308 (2009).

    Article  Google Scholar 

  30. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Article  Google Scholar 

  31. A. Kolomogrov, Izv. Akad. Nauk SSSR. Ser. Matem 1, 355 (1937).

    Google Scholar 

  32. W.A. Johnson and R.F. Mehl, Trans. Am. Inst. Min. Metall. Eng. 135, 416 (1939).

    Google Scholar 

  33. M. Avrami, J. Chem. Phys. 8, 212 (1940).

    Article  Google Scholar 

  34. M. Avrami, J. Chem. Phys. 9, 177 (1941).

    Article  Google Scholar 

  35. J. Chen, J. Bai, H. Chen, and J. Graetz, J. Phys. Chem. Lett. 2, 1874 (2011).

    Article  Google Scholar 

  36. R.J. Francis, S. O’Brien, A.M. Fogg, P.S. Halasyamani, D. O’Hare, T. Loiseau, and G. Ferey, J. Am. Chem. Soc. 121, 1002 (1999).

    Article  Google Scholar 

  37. J.W. Christian, The Theory of Transformations in Metals and Alloys, ed. J.W. Christian (Oxford: Pergamon, 2002), pp. 529–552.

    Chapter  Google Scholar 

Download references

Acknowledgements

This project was supported in part by the Australian Research Council (ARC) through LP140100607. T. Song acknowledges the use of the Australian Synchrotron Powder Diffraction Beamline (Proposal ID: PD/7953 and PD/8856) and the RMIT University’s Microscopy and Microanalysis Facility, a linked laboratory of the Microscopy Australia. T. Song further thanks Dr Nathan A.S. Webster, Dr Mark J. Styles and Dr Justin A. Kimpton for their experimental assistance at Australian Synchrotron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T. Copper Surfaces with Bimodal Nanoporosity by Microstructural Length Scale Controlled Dealloying of a Hypereutectic Al-Cu Alloy. JOM 72, 4648–4656 (2020). https://doi.org/10.1007/s11837-020-04391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04391-2

Navigation