Skip to main content
Log in

Yin Yang 1-induced LINC00667 up-regulates pyruvate dehydrogenase kinase 1 to promote proliferation, migration and invasion of cholangiocarcinoma cells by sponging miR-200c-3p

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Cholangiocarcinoma (CCA) is one of the most aggressive and lethal malignancies. Long noncoding RNAs (lncRNAs) are being found to play crucial roles in CCA progression. This work aims to investigate the roles of long intergenic non-protein coding RNA 667 (LINC00667) in progression of CCA. RT-qPCR and western blot were applied to detect gene expression. Clinical correlation and survival were analyzed by statistical methods. Overexpression and RNA interference approaches were used to investigate the effects of LINC00667 on CCA cells. Tumor xenograft assay was performed to detect the function of LINC00667 in vivo. Transcriptional regulation and competing endogenous RNA (ceRNA) mechanism were predicted via bioinformatics analysis. ChIP, luciferase reporter, and Ago2 RIP assays further confirmed the predicted results. Our data indicated that LINC00667 was highly expressed in CCA tissues and cells, and transcription factor Yin Yang 1 (YY1) induced LINC00667 expression in CCA cells. Up-regulated LINC00667 was significantly associated with lymph node metastasis, advanced TNM stage, and poor prognosis. Knockdown of LINC00667 suppressed the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of CCA cells, while overexpression of LINC00667 acquired opposite effects. Moreover, knockdown of LINC00667 inhibited tumor growth in vivo. In addition, LINC00667 was demonstrated to function as a ceRNA for miR-200c-3p, and then LINC00667 up-regulated pyruvate dehydrogenase kinase 1 (PDK1) to promote CCA development by inhibiting miR-200c-3p. These findings identified a pivotal role of LINC00667 in tumorigenesis and development of CCA. Targeting the YY1/LINC00667/miR-200c-3p/PDK1 axis may provide a new therapeutic strategy for CCA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383(9935):2168–79. https://doi.org/10.1016/S0140-6736(13)61903-0.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hoyos S, Navas MC, Restrepo JC, Botero RC. Current controversies in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4 Pt B):1461–7. https://doi.org/10.1016/j.bbadis.2017.07.027.

    Article  CAS  PubMed  Google Scholar 

  3. Wang L, Cao L, Wen C, Li J, Yu G, Liu C. LncRNA LINC00857 regulates lung adenocarcinoma progression, apoptosis and glycolysis by targeting miR-1179/SPAG5 axis. Hum Cell. 2020;33(1):195–204. https://doi.org/10.1007/s13577-019-00296-8.

    Article  CAS  PubMed  Google Scholar 

  4. Molist C, Navarro N, Giralt I, et al. miRNA-7 and miRNA-324-5p regulate alpha9-Integrin expression and exert anti-oncogenic effects in rhabdomyosarcoma. Cancer Lett. 2020;477:49–59. https://doi.org/10.1016/j.canlet.2020.02.035.

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Huang L, Li Z, et al. Functions and roles of long noncoding RNA in cholangiocarcinoma. J Cell Physiol. 2019;234(10):17113–26. https://doi.org/10.1002/jcp.28470.

    Article  CAS  PubMed  Google Scholar 

  6. Ma Q, Qi X, Lin X, Li L, Chen L, Hu W. LncRNA SNHG3 promotes cell proliferation and invasion through the miR-384/hepatoma-derived growth factor axis in breast cancer. Hum Cell. 2020;33(1):232–42. https://doi.org/10.1007/s13577-019-00287-9.

    Article  CAS  PubMed  Google Scholar 

  7. Chen W, Zhou ZQ, Ren YQ, et al. Effects of long non-coding RNA LINC00667 on renal tubular epithelial cell proliferation, apoptosis and renal fibrosis via the miR-19b-3p/LINC00667/CTGF signaling pathway in chronic renal failure. Cell Signal. 2019;54:102–14. https://doi.org/10.1016/j.cellsig.2018.10.016.

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Zheng J, Liu X, et al. Knockdown of USF1 inhibits the vasculogenic mimicry of glioma cells via stimulating SNHG16/miR-212-3p and linc00667/miR-429 axis. Mol Ther Nucleic Acids. 2019;14:465–82. https://doi.org/10.1016/j.omtn.2018.12.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Y, Li S, Cao J, Li Y, Hu H, Wu Z. RRM2 regulated by LINC00667/miR-143-3p signal is responsible for non-small cell lung cancer cell progression. Onco Targets Ther. 2019;12:9927–39. https://doi.org/10.2147/OTT.S221339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu P, Chen S, Huang Y, et al. LINC00667 promotes Wilms’ tumor metastasis and stemness by sponging miR-200b/c/429 family to regulate IKK-β. Cell Biol Int. 2020;44(6):1382–93. https://doi.org/10.1002/cbin.11334.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang Y, Yang Y, Wang H, Darko GM, Sun D, Gao Y. Identification of miR-200c-3p as a major regulator of SaoS2 cells activation induced by fluoride. Chemosphere. 2018;199:694–701. https://doi.org/10.1016/j.chemosphere.2018.01.095.

    Article  CAS  PubMed  Google Scholar 

  12. Maolakuerban N, Azhati B, Tusong H, Abula A, Yasheng A, Xireyazidan A. MiR-200c-3p inhibits cell migration and invasion of clear cell renal cell carcinoma via regulating SLC6A1. Cancer Biol Ther. 2018;19(4):282–91. https://doi.org/10.1080/15384047.2017.1394551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Danarto R, Astuti I, Umbas R, Haryana SM. Urine miR-21-5p and miR-200c-3p as potential non-invasive biomarkers in patients with prostate cancer. Turk J Urol. 2019;46(1):26–30. https://doi.org/10.5152/tud.2019.19163.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dupuy F, Tabariès S, Andrzejewski S, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 2015;22(4):577–89. https://doi.org/10.1016/j.cmet.2015.08.007.

    Article  CAS  PubMed  Google Scholar 

  15. Siu MKY, Jiang YX, Wang JJ, et al. PDK1 promotes ovarian cancer metastasis by modulating tumor-mesothelial adhesion, invasion, and angiogenesis via α5β1 integrin and JNK/IL-8 signaling. Oncogenesis. 2020;9(2):24. https://doi.org/10.1038/s41389-020-0209-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu JY, Chang JY, Chang KY, Chang WC, Chen BK. Epidermal growth factor-induced pyruvate dehydrogenase kinase 1 expression enhances head and neck squamous cell carcinoma metastasis via up-regulation of fibronectin. FASEB J. 2017;31(10):4265–76. https://doi.org/10.1096/fj.201700156R.

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Zeng K, Xu M, et al. SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis. 2018;9(10):982. https://doi.org/10.1038/s41419-018-0962-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li J, Jiang X, Li C, et al. LncRNA-MEG3 inhibits cell proliferation and invasion by modulating Bmi1/RNF2 in cholangiocarcinoma. J Cell Physiol. 2019;234(12):22947–59. https://doi.org/10.1002/jcp.28856.

    Article  CAS  PubMed  Google Scholar 

  19. Shen Y, Xu J, Pan X, et al. LncRNA KCNQ1OT1 sponges miR-34c-5p to promote osteosarcoma growth via ALDOA enhanced aerobic glycolysis. Cell Death Dis. 2020;11(4):278. https://doi.org/10.1038/s41419-020-2485-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu M, Huang Y, Chen T, et al. LncRNA MEG3 inhibits the progression of prostate cancer by modulating miR-9-5p/QKI-5 axis. J Cell Mol Med. 2019;23(1):29–38. https://doi.org/10.1111/jcmm.13658.

    Article  CAS  PubMed  Google Scholar 

  21. Bai J, Xu J, Zhao J, Zhang R. LncRNA NBR2 suppresses migration and invasion of colorectal cancer cells by downregulating miRNA-21. Hum Cell. 2020;33(1):98–103. https://doi.org/10.1007/s13577-019-00265-1.

    Article  CAS  PubMed  Google Scholar 

  22. Shen S, Li K, Liu Y, et al. Silencing lncRNA AGAP2-AS1 upregulates miR-195-5p to repress migration and invasion of EC cells via the decrease of FOSL1 expression. Mol Ther Nucleic Acids. 2020;20:331–44. https://doi.org/10.1016/j.omtn.2019.12.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen Y, Gao X, Tan W, Xu T. STAT1-mediated upregulation of lncRNA LINC00174 functions a ceRNA for miR-1910-3p to facilitate colorectal carcinoma progression through regulation of TAZ. Gene. 2018;666:64–71. https://doi.org/10.1016/j.gene.2018.05.001.

    Article  CAS  PubMed  Google Scholar 

  24. Yang F, Shen Y, Zhang W, et al. An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death Differ. 2018;25(12):2209–20. https://doi.org/10.1038/s41418-018-0123-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li C, Liu H, Yang J, et al. Long noncoding RNA LINC00511 induced by SP1 accelerates the glioma progression through targeting miR-124-3p/CCND2 axis. J Cell Mol Med. 2019;23(6):4386–94. https://doi.org/10.1111/jcmm.14331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang W, Zhou W, Xiang L, et al. The p300/YY1/miR-500a-5p/HDAC2 signalling axis regulates cell proliferation in human colorectal cancer. Nat Commun. 2019;10(1):663. https://doi.org/10.1038/s41467-018-08225-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiao K, Ning S, Wan L, et al. LINC00673 is activated by YY1 and promotes the proliferation of breast cancer cells via the miR-515-5p/MARK4/Hippo signaling pathway. J Exp Clin Cancer Res. 2019;38(1):418. https://doi.org/10.1186/s13046-019-1421-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li P, Zhou B, Lv Y, Qian Q. LncRNA HEIH regulates cell proliferation and apoptosis through miR-4458/SOCS1 axis in triple-negative breast cancer. Hum Cell. 2019;32(4):522–8. https://doi.org/10.1007/s13577-019-00273-1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81602088).

Funding

This work was supported by the National Natural Science Foundation of China (No. 81602088).

Author information

Authors and Affiliations

Authors

Contributions

JL: conceptualization; JL and XJ: experimental design and execution; ZH and LL: data curation and analysis; YC: experimental resources; CG and ZS: writing-original draft; PK: writing-review and editing; YC: supervision. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Xingming Jiang or Yunfu Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of The 2nd Affiliated Hospital of Harbin Medical University (KY2018-301), and patient consent was acquired prior to the initiation of experiment. All procedures performed in studies involving animals were in accordance with the ethical standards of the Animal Care and Use Committee of The 2nd Affiliated Hospital of Harbin Medical University (SYDW2018-114).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Guan, C., Hu, Z. et al. Yin Yang 1-induced LINC00667 up-regulates pyruvate dehydrogenase kinase 1 to promote proliferation, migration and invasion of cholangiocarcinoma cells by sponging miR-200c-3p. Human Cell 34, 187–200 (2021). https://doi.org/10.1007/s13577-020-00448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00448-1

Keywords

Navigation